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X-ray diffraction has, within the past two decades, developed into a powerful analyti-

cal tool for determining the atomic structure of crystalline surfaces. The dual advantages of

high intensity and high resolution have made this technique thrive at synchrotron radiation

sources. The experiments in this thesis extend surface x-ray diffraction to metal surfaces

with particularly low symmetry: the multilayer surface structure of α-Ga(010), complicated

by the low symmetry of the bulk, and Cu(115), a regularly stepped surface which sponta-

neously facets when exposed to oxygen. The equations describing surface x-ray diffraction

are derived, with attention paid to assumptions made during the derivation and limitations

of the technique. In particular, the theory of scattering from a rough surface is generalized

to permit various models of roughness. The surface diffraction chamber in which these ex-

periments were performed is briefly described, along with the load lock which allows samples

to be inserted without opening the entire vacuum chamber to atmosphere.

We have determined the surface structure of α-Ga(010) near its melting point using x-

ray diffraction. Due to the low symmetry of the α-Ga bulk structure, two distinct bulk

truncations of the (010) surface are possible. Of these two ways, we find the true surface is

formed by cutting through dimer bonds (i. e., between metallic bilayers). The contraction of

the metallic bonds and expansion of the covalent bonds at the surface imply that the surface

is more metallic than the bulk. Our results suggest that α-Ga is fundamentally composed

not of Ga2 dimers, but of corrugated metallic bilayers which can be modeled as deltahedral

clusters.

Cu(001) vicinal surfaces facet when exposed to O. We have studied this process on

Cu(115), which transforms from a clean surface to 104 and 113 facets, using surface x-
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ray diffraction. Unlike α-Ga(010), the low symmetry of these surfaces is due to their high

Miller indices, i. e., the stepped nature of the surfaces. The Cu(115) surface exhibits a com-

plex interlayer relaxation accounted for by basic elasticity theory; the vertical displacements

of the three surface atoms correlate to those of the subsurface atoms directly below. The

O/Cu(104) facets do not, as previously proposed, involve any missing Cu rows, but the top

three rows are expanded away from the bulk; the Cu–O chains which stabilize this surface

are similar to those present on other O on Cu reconstructions. A complete structure de-

termination was not possible for the O/Cu(113) facets, due to significant disorder, but an

unambiguous (3×1) reconstruction was observed.

Besides being instrumental in determining the static structure of surfaces and facets,

surface x-ray diffraction allows us to noninvasively observe, in situ, the evolution of the

faceting surface. We find that the faceting is driven by the formation of O/Cu(104) facets:

O exposure induces spinodal decomposition of the (115) surface into (104) and (014) facets,

which form spontaneously, and also disordered, stepped facets, whose orientation gradually

changes from (115) to (113) as the (104) facets grow. We identify three temperature regimes

which have qualitatively different faceting processes, shedding light on the temperature de-

pendence of the equilibrium crystal shape for part of the O-covered Cu system. During the

faceting process, the time evolution follows a slow dynamic scaling behavior, consistent with

either a logarithmic or power-law dependence.

Throughout this thesis, comparisons are made with results obtained by other surface-

sensitive techniques. The complimentarity of these techniques is worth emphasizing; despite

the power of surface x-ray diffraction in solving crystal structures, its ability to interpret and

explain the properties of these surfaces is greatly enhanced by microscopy, spectroscopy, and

other diffraction techniques, as well as theoretical and numerical studies.
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Chapter 1

Scattering of x rays by surfaces

1.1 Surface x-ray diffraction

1.1.1 Scattering from electrons and atoms

Surface x-ray diffraction depends on the elastic scattering of x rays by electrons. For incident

radiation of amplitude A0, the amplitude of scattered light by an electron (of charge −e and

mass m at position r) is given by the classical Thompson formula [1]:

A = A0
e2

mc2R
exp(+iki · r− ikf · r) = A0

e2

mc2R
exp(−iq · r), (1.1)

where R is the (large) distance from the electron to the detector, ki and kf are the incident

and exit wavevectors, respectively, and q is their difference. That is, |ki| = |kf | = 2π
λ

, and

|q| = 4π sin(2θ/2)
λ

, where 2θ is the scattering angle. The amplitude has, in general, a complex

value; it can be multiplied by eiψ, with ψ any arbitrary phase factor (equivalent to changing

the origin of r). An experiment will only measure the intensity (the square modulus of the

amplitude).

Given the small value of e2

mc2R
, x-ray scattering from a single electron is relatively weak

compared to electron-electron scattering, with the simplifying result that surface x-ray
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diffraction fits completely within the kinematic (single-scattering) approximation; dynamical

scattering is only relevant very near three-dimensional Bragg diffraction spots of “perfect”

crystals. Conversely, x-ray scattering from an electron is roughly three orders of magnitude

greater than scattering from a nucleus (through the ratio of the proton to electron masses);

nuclear x-ray scattering is thus completely negligible in all but certain specific resonant

conditions.

Within the kinematic approximation, the amplitude of light scattering from two electrons

is simply the sum of the amplitudes of the scattering from the individual electrons:

A1+2 = A1 + A2 = A0
e2

mc2R

(
exp(−iq · r1) + exp(−iq · r2)

)

= A0
e2

mc2R

(
1 + exp(−iq · (r1 − r2))

)
exp(−iq · r2). (1.2)

By factoring out exp(−iq ·r2), Eq. 1.2 emphasizes the importance of r1−r2, the path length

difference between the two electrons, on the scattering amplitude.

Scattering from multiple electrons is calculated similarly, by summing the amplitudes of

scattering from each individual electron. If the electrons cannot be treated as point particles,

then the summation becomes an integral over the number density ρ (r):

A = A0
e2

mc2R

∫
ρ (r)e(−iq·r) d3r. (1.3)

∫
ρ (r)d3r is the total number of electrons in the system, while −eρ (r) is the charge density of

the electron distribution. Eq. 1.3 shows that A and ρ (r) are related by a Fourier transform.

From Eq. 1.3, the amplitude of scattering from an atom of electron density ρZ (r) directly

follows. The atomic form factor f0 is Eq. 1.3 without the prefactors:

f0(q) =
∫

ρZ (r)e(−iq·r) d3r. (1.4)

Form factors have been calculated (usually assuming spherical symmetry) and tabulated for

the elements [2] , as have been the coefficients of an analytical approximation: [2]

f0(q) =
4∑

i=1

ai exp(−bi q
2/16π2) + c. (1.5)
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If the incident x ray’s energy is near that of an absorption edge for an atom, resonant

effects may become important and additional terms must be added to Eq. 1.4 [1, 3]:

f(q, E) = f0(q) + f ′(E) + i f ′′(E). (1.6)

The resonant terms f ′(E) and f ′′(E) are weakly q-dependent, and vary slowly except near

edges. Values for the resonant terms have been tabulated for free atoms in the dipole approx-

imation, but in condensed matter the values may change significantly near edges, due to the

presence of nearby atoms (and may also vary with polarization and orientation). This effect

is exploited in techniques such as EXAFS, XANES, and DAFS, but most surface diffraction

work attempts to avoid the complications of resonant effects by choosing energies far from

absorption edges (ideally, the x-ray energy is below the edge to minimize fluorescence). How-

ever, resonant scattering at interfaces has been used by by Specht and Walker to determine

the registry [4] and charge state [5] of interfacial atoms, and Chu et al. [6] used surface res-

onant scattering to determine the charge state of Pt(111) atoms undergoing surface anodic

oxidation.

X-ray magnetic scattering is possible for atoms with a net spin (or angular momentum).

Again, this effect is much weaker than the typical case of charge scattering, but can be

extremely enhanced near absorption edges and with elliptically polarized radiation. Re-

cent experiments have observed magnetic scattering at the UO2(001) [7] and Co3Pt(111) [8]

surfaces.

1.1.2 Scattering from a bulk crystal

A crystal, simply defined, is a lattice with a basis. The electron density of a crystal is just

that of the unit cell (the basis) convoluted with an array of delta functions (the lattice) in

real space:

ρcrystal (r) = ρcell (r) ⊗
+N∑

n1,n2,n3=−N

δ(x− n1a) δ(y − n2b) δ(z− n3c). (1.7)
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(a, b, and c are the lattice parameters of the crystal.) The scattered amplitude from the

crystal is the Fourier transform of Eq. 1.7, i. e., the transform of the electron density of the

cell multiplied by that of the lattice.

The Fourier transform of the unit cell is called the structure factor. If the j atoms of

the cell are located at r1, r2, . . . rj (relative to the origin of the unit cell), then the structure

factor F (q) can be reexpressed in terms of the atomic positions and form factors:

F (q) =
∫

cell
ρcell (r) e−iq·r d3r

=
j∑

n=1

fn (q) e−iq·r d3rn. (1.8)

Each sum of delta functions in Eq. 1.7 Fourier transforms into sums of phases:

FT



+Nx∑

n1=−Nx

δ(x− n1a)


 =

+Nx∑

n1=−Nx

exp (−in1 q · a)

=
exp (iNx q · a)− exp (−iNx q · a)

1− exp (−iq · a)
. (1.9)

The diffracted intensity, an observable quantity, is proportional to the square modulus of

Eq. 1.9. This is the N -slit interference function,

sin2 (Nx q · a)

sin2 (q · a/2)
, (1.10)

which becomes sharply peaked for large Nx. Eq. 1.10 has maxima at integer values of qx a
2π

,

with height proportional to N2
x and width inversely proportional to Nx.

For sufficiently large Nx, Eq. 1.10 is comparable to an array of delta functions, this

time in reciprocal space. For a three-dimensional bulk crystal, the derivations for the y and

z directions are equivalent to the derivation for x above, and the diffracted intensity will

be very small except at discrete points in reciprocal space. At these “bulk” or “Bragg”

diffraction spots, the scattered intensity is very strong. Their positions are given by integer

values of h, k, and `, which can be used in place of the q vector to index reciprocal space:

qx a

2π
= h,

4



qy b

2π
= k, (1.11)

qz c

2π
= `.

The Laue condition states that h, k, and ` must simultaneously be integers for diffraction

from a three-dimensional bulk crystal to occur.

In practice, Nx, Ny, and Nz are not usually well-defined, but are contingent on, for ex-

ample, the x-ray coherence length and the grain size of the bulk crystal. If particle size is the

limiting factor, then the width of the bulk peaks is inversely proportional to the average par-

ticle size; the actual shape of the peak depends on the particular distribution of particle sizes

in the crystal. Measuring the integrated intensity, rather than the peak intensity, performs

an ensemble average over effects such as particle size distribution, beam divergence, and

the mosaic spread, and is therefore a useful crystallographic tool. To quantitatively extract

structure factors from integrated intensity data, geometry-dependent (i. e., q-dependent)

corrections for the Lorentz factor, polarization factor, and illuminated volume 1 must be

performed.

1.1.3 Scattering from a crystal surface

In contrast to scattering from a bulk crystal, scattering from a surface does introduce an

asymmetry in the sums of Eq. 1.7. One sum, usually the third, is abruptly truncated at

the surface. The z direction is, then, taken to be perpendicular to the surface, with x and

y in the surface plane. This may require a transformation from the traditional choice of

lattice parameters. For example, in changing from reciprocal space coordinates (H, K, L) in

standard face centered cubic orientation (a = b = c; α = β = γ = 90◦) to (111) surface

1For surface diffraction, the correction is for variation of the illuminated surface area with q.
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coordinates, the following transformation is used:




h

k

`




(111)

=




−1
2

1
2

0

0 −1
2

1
2

1 1 1







H

K

L




fcc

. (1.12)

The (real-space) z direction is, after this transformation, perpendicular to the surface; x

and y are parallel to the surface and separated by 120◦, reflecting the three-fold symmetry

of the fcc(111) surface. Transformations from the standard fcc coordinates to (115), (104),

and (113) surface orientations will be discussed in chapter 3. An important exception to

this convention is α-Ga, whose (010) surface structure is described in chapter 2. Due to its

orthorhombic symmetry, α-Ga’s lattice parameters are not interchangeable. To maintain the

crystallographic convention of Cmca symmetry (instead of nonstandard Bmab), the y axis

must remain perpendicular to the surface.

Transformations such as Eq. 1.12 often yield indexing schemes which do not have Bragg

peaks at every integer (h, k, `) triplet. Instead, if the number of ways to “slice through”

the surface unit cell in the x-y plane and form an equivalent surface is nlayers, then Bragg

peaks will be separated in ` by an amount nlayers. (Some examples are listed in table

1.1.) For example, if a given crystal has a bulk peak at (h, k, `B), there will be bulk peaks

at (h, k, `B ± nlayers), (h, k, `B ± 2nlayers), etc. In calculating surface roughness, described

below in section 1.1.4, the absolute perpendicular momentum transfer does not matter, but

the distance in qz from the nearest Bragg point does; in this case qz c can be replaced by

2π
nlayers

(`− `B), where each (h, k) has a particular value of `B.

To calculate the amplitude of scattering from the surface of a semi-infinite crystal, the

sum of Eq. 1.9 is given a definite ending point:

A ∝
N∑

n=−∞
Fbulk exp (−inq · c)

= Fbulk
exp(−iN q · c)

1− exp (−iq · c) . (1.13)
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Surface nlayers

simple cubic (001) 1

fcc(001) 2

fcc(111) 3

fcc(115) 27

fcc(104) 17

fcc(113) 11

α-Ga(010) 2

Table 1.1: nlayers for several surfaces, including those considered in this thesis.

The intensity is, again, the square modulus of the amplitude. For integer values of h and k,

I ∝ |A|2 ∝ |Fbulk|2 1

4 sin2
(

q·c
2

) . (1.14)

As with Eq. 1.9, Eq. 1.14 predicts high intensity at the bulk peaks. Away from the bulk peaks,

however, diffracted intensity is concentrated in “rods” which originate at the bulk peaks and

are oriented perpendicular to the surface, and therefore have been labeled “crystal truncation

rods” (CTRs) [9] for h and/or k 6= 0. (The case of h = k = 0 is that of specular reflectivity, a

surface-sensitive technique not limited to crystalline materials [10].) The constraint of finding

intensity only at ` = `B is relaxed. The inverse-sine-squared behavior produces a minimum

in intensity at the anti-Bragg position (i. e., ` = `B ± nlayers/2) where measurements are

most sensitive to the conditions of the surface.

Real surfaces will not scatter according to Eq. 1.13 since two assumptions implicit in the

derivation are not generally true, as discussed here and in section 1.1.4. First, the atoms

at a crystal surface do not generally lie exactly at their bulk positions. This could be due

to interlayer relaxations, absorption of foreign atoms, and/or reconstructions. A separate,

surface structure factor must be calculated with Eq. 1.8 and added, with the appropriate
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phase, to Eq. 1.13:

A ∝
N∑

n=−∞
Fbulk exp (−inq · c) + Fsurface exp(−iN q · c)

=

(
Fbulk

1− exp (−iq · c) + Fsurface

)
exp(−iN q · c). (1.15)

The bulk and surface structure factors interfere, which aids in the determination of surface

structure (since the bulk structure factor is usually known.)

When the surface is reconstructed, its unit cell has dimensions which are a multiple of

the bulk unit cell’s in-plane dimensions. Besides the CTRs, rods of scattering can appear

at fractional values of h and/or k, as determined by the symmetry of the reconstruction.

For these rods, there is no contribution from the bulk, i. e., A ∝ Fsurface. (An alternate

calculation of the scattering from a reconstructed surface is performed by increasing the

lateral dimensions of the bulk unit cell to match that of the surface. This way, h and k will

be integers even for the rods due to the reconstruction and Eq. 1.15 applies, but Fbulk is

identically zero.)

1.1.4 Scattering from a rough surface

Real surfaces are not perfectly smooth. Whether due to local rough spots or to long-ranged

terraces, different regions of a crystal will truncate at varying heights; these surfaces at

different heights will interfere with each other. The abrupt cut-off in the sums of eqs. 1.13

or 1.15 is no longer appropriate. In the derivation that follows, “roughness” always refers to

crystalline roughness, i. e., all atoms on a given terrace remain at lattice sites. An amorphous

or liquid overlayer will not affect CTR intensity in the same manner.

To calculate the scattering from the rough surface of a semi-infinite crystal, Robinson

[9] assumed that the crystal was perfect up to z = 0, and above that, continually decreased

in (laterally averaged) density (via a parameter β, which is less than unity). Eq. 1.13 then

8



breaks into two sums:

A ∝ Fbulk

(
0∑

n=−∞
exp (−inq · c) +

∞∑

n=1

βn exp (−inq · c)
)

. (1.16)

This method effectively sums from z = −∞ to where the surface “might” be.

A more general method is to sum from z = −∞ to the surface, and then sum over the

probability of finding the surface at a given z. That is, let P (N) be the probability of finding

the surface at z = N . To find the scattered amplitude, two sums are performed:

A ∝ Fbulk

∑

N

P (N)
N∑

n=−∞
exp (−inq · c) . (1.17)

The sum over n of Eq. 1.17 is exactly that of an ideal CTR, i. e., Eq. 1.13. The sum over

N represents the surface roughness; the measured intensity is therefore the same as that for

an ideally flat surface multiplied by a roughness factor

∣∣∣∣∣
∑

N

P (N) exp (−iN q · c)
∣∣∣∣∣
2

. (1.18)

The surface roughness, therefore, completely decouples from the crystalline structure of the

surface; the expression for the intensity factors into separate components for structure and

roughness.

Roughness has little effect near the Bragg peaks, where scattering is more sensitive to the

bulk, but can significantly lower the intensity around the out-of-phase (anti-Bragg) position,

where scattering is most surface sensitive. The extent of the effect, of course, is greater

for greater values of σ, the root mean square surface width. Eq. 1.18 is solved for three

probability distribution functions in Table 1.2. The probability distribution functions are

shown in Fig. 1.1a, and the resulting roughness factors are shown in Fig. 1.1b.

Fig. 1.1c demonstrates the effect of these roughness models on CTR intensity. A geo-

metric probability distribution gives the same results as Eq. 1.16, and in fact seems to work

best for most surfaces. The roughness factor of the Poisson distribution [11] is qualitatively

different than the geometric model, with a greater reduction in intensity at the anti-Bragg

9



P
ro

b
ab

il
it
y

d
is

tr
ib

u
ti

on
P

(N
)

P
ar

am
et

er
(s

)
σ

R
ou

gh
n
es

s
fa

ct
or

fo
r

C
T

R
s

ge
om

et
ri

c
(1
−

β
)
β

N
β

√ β

1
−β

(1
−β

)2

1
+

β
2
−2

β
co

s(
q z

c)

0
≤

β
<

1

P
oi

ss
on

e−
λ

λ
N

N
!

λ
√ λ

ex
p

( −4
λ

si
n

2
( q z

c
2

))

λ
≥

0

b
in

om
ia

l
n
!(

n
−N

)!
N

!
pN

(1
−

p)
n
−N

n
,p

√
n
p

(1
−

p)
[1
−

2p
(1
−

p)
(1
−

co
s
(q

z
c)

)]
n

n
=

in
te

ge
r

>
0

0
≤

p
≤

1

T
ab

le
1.

2:
F
or

m
s

fo
r

va
ri

ou
s

ro
u
gh

n
es

s
m

o
d
el

s.
T

h
e

p
ro

d
u
ct

of
th

e
ro

u
gh

n
es

s
fa

ct
or

an
d

th
e

in
te

n
si

ty
of

a
sm

o
ot

h
su

rf
ac

e’
s
C

T
R

is
th

e
in

te
n
si

ty
of

th
e

ro
u
gh

su
rf

ac
e’

s
C

T
R

.
F
or

am
p
li
tu

d
es

,
ta

ke
th

e
sq

u
ar

e
ro

ot
of

th
e

ro
u
gh

n
es

s
fa

ct
or

.

10



Figure 1.1: a) Probability distribution functions for the geometric, Poisson,
and binomial distributions (symbols: ¦, +, × respectively). For each distri-
bution, σ = 1.5 unit cells, corresponding to β = 0.52, λ = 2.25, and p = 0.25
with n = 12. In all three cases for this value of σ, P (N > 8) < 10−3; the
binomial distribution is identically zero for N > 12.
b) Roughness factors calculated for the distributions of a), using Eq. 1.18. The
dashed, dotted, and dash-dot lines represent the roughness factors modeled by
geometric, Poisson, and binomial distributions respectively.
c) Effect of roughness on CTR intensity. The roughness factors of part b)
are multiplied by the intensity from a bulk-truncated CTR, Eq. 1.14. For
comparison, the solid line represents the intensity from a smooth surface.
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position and less reduction nearer to the bulk peak. The binomial distribution requires two

parameters, a real p and an integer n (which must be varied discretely when fitting a rough-

ness model to data). Unlike the geometric and Poisson distributions which (mathematically

if not physically) extend to z = +∞, the binomial distribution ends at z = n. For a given σ,

its roughness factor is like the Poisson, but with less intensity at the anti-Bragg position; for

large n and small p, the binomial distribution approaches the Poisson, with λ = np (1− p).

The enormous difference in the roughness models for large σ is clearly seen in Fig. 1.1c.

The geometric model has the least intensity loss of the three models, even though σ, the root

mean square width of the distributions, is the same. However, the maximum of Pgeometric (N)

[= 1− β] is always at N = 0, meaning most terraces of the crystal are at height z = 0. The

probability distribution functions in the Poisson and binomial cases are less sharply peaked,

resulting in most terraces being spread among three or four values of z. The greater spread in

these distributions’ peaks results in less intensity, for a given width of the overall distribution.

In the opposite limit of small σ, the models become equivalent; the roughness factor becomes

1− 4σ2 sin2
(

qzc
2

)
.

Besides the three examples discussed above, any discrete probability distribution can

model roughness with Eq. 1.17. This includes discrete versions of continuous distribution

functions, such as the Gaussian distribution [11]. However, the roughness factor has no simple

analytical form since the discretized Gaussian distribution must be numerically normalized;

this quickly becomes computationally expensive if σ is a fitting parameter.

In the case of a reconstructed surface, the fractional order rods cannot have the same

roughness factor as integer order rods since the fractional order rods do not pass through

bulk peaks. This roughness factor can be calculated in the limit of coherent scattering from

terraces at the same height, and incoherent scattering between reconstructed terraces at

different heights. This model probably applies best to surfaces with long, flat terraces with

evenly distributed steps, rather than a heavily stepped surface. The scattered amplitude from
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a terrace at given height is proportional to the number of scatterers on the terrace, i. e., its

size. This, the area of a terrace at height N , is proportional to P (N), the probability that

the crystal truncates at z = N . The intensity scattered from this terrace is simply P 2 (N),

and the incoherently scattered intensity from such a surface is proportional to the sum of

the probabilities squared, without any phase factor:

∞∑

n=0

P 2 (N) (1.19)

All intensities from fractional order rods are thus decreased by a q-independent, constant

factor. For the geometrical model of roughness, the factor for fractional order rods is

∞∑

n=0

P 2 (N) =
∞∑

n=0

(1− β)2 β2n =
1− β

1 + β
. (1.20)

The factor for the Poisson model is

∞∑

n=0

P 2 (N) =
∞∑

n=0

e−2λ λ2n

(n!)2
= e−2λ I0 (2λ) , (1.21)

where I0 is the zeroth-order modified Bessel function.

1.1.5 Thermal vibrations

Atomic vibrations may significantly affect intensities measured by surface diffraction. To

zeroth order, the only effect is a (q-dependent) decrease in the scattered intensity, without

changing any peak widths or positions [1]. For small enough vibrations, atomic positions can

be represented with a Gaussian distribution, corresponding to atoms in a harmonic potential.

In this model (which is exact if the atomic potentials are purely harmonic), the atomic form

factor (Eq. 1.4) is simply multiplied by the Debye-Waller factor

e−M = e−B q2 / (16 π2) = e−<u2> q2 /2 , (1.22)

where < u2 > is the mean square displacement of the atom from its average location.

Different elements (or atoms of the same element at different sites) will in general have

different values of B.
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In general, thermal vibrations need not be isotropic, but only vibrations in the direction

of q have an effect on the intensity. That is, with Cartesian coordinates Eq. 1.22 can be

replaced by

e−(Bx q2
x +By q2

y +Bz q2
z)/(16 π2) (1.23)

with Bm /8π2 = < u2
m >, the mean square displacement in direction m. This anisotropy

is particularly relevant to surface diffraction, since atomic vibrations at surfaces tend to be

higher than the bulk, but are particularly enhanced perpendicular to the surface due to the

loss of coordination.

The higher order effects of thermal vibrations [1] do not matter much in surface diffraction

except as a nuisance, since they result in a relatively isotropic, slowly varying background

which can be subtracted from integrated intensity measurements. (Subtracting this thermal

diffuse background could be more difficult very close to the bulk Bragg peaks, where it is

strongest.) On the other hand, anharmonic vibrations may be particularly important at

some surfaces. For K/Ag(001)–(2 × 1), Meyerheim et al. [12] demonstrated that neglecting

anharmonicity results in a severe overestimation of the first Ag layer’s contraction relative

to the second. A harmonic potential would require a surface atom to vibrate inward and

outward with equal probability; in reality, at least for the top-layer Ag atoms in this system,

the anharmonic potential causes excursions away from the surface to be much larger than

excursions into the bulk.

1.2 Experimental set-up

1.2.1 Diffraction chamber

Most surface science experiments must be performed in a vacuum chamber for two reasons.

One is a limitation of the technique: the mean free paths of electrons, ions, and atoms

(the most common surface probes) are too small in air to be useful. (A notable exception
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is experiments in a tunneling configuration; STM is usable in atmosphere due to the tiny

separation of the tip from the surface.) Light does not suffer this limitation, allowing x

rays, with their large absorption lengths, to be a useful probe of surfaces in electrochemistry

environments (e. g., [13, 6]) as well as buried interfaces (e. g., [14]).

The other, more fundamental, reason is the nature of surfaces. Many surfaces can be

altered or completely changed as a result of exposure to various gases; the oxygen-induced

faceting of Cu(115) described in chapters 3 and 4 is a prime example. In order to study the

fundamental nature of a surface, as desired in chapter 2, exposure to foreign gases must be

kept to a minimum.

All of the experiments described in this thesis were performed on the surface diffrac-

tion chamber [15] installed on beamline X16A of the National Synchrotron Light Source,

Brookhaven National Laboratory. The UHV chamber, pictured in Fig. 1.2, is connected to

a diffractometer which, through a series of differentially pumped bellows, holds the sample

in place. The bellows allow the “five-circle” diffractometer to make high-resolution changes

to the sample’s angular position without needing to move the bulky chamber. The sample

holder is connected to the sample manipulator with three springs. When the sample is posi-

tioned for diffraction, the sample holder rests on a kinematic mount directly attached to the

diffractometer. The manipulator is pulled back from the sample holder, so the three springs

are in tension; motions of the sample are thus decoupled from motions of the chamber. A

laser beam is reflected at nearly normal incidence (through a viewport at the end of the

chamber) to find the optical surface of the sample.

The diffractometer motions are 2θ, θ, φ, and χ, typical of a four-circle diffractometer,

[16] as well as α, a rotation of the sample and detector (and the entire chamber) about a

vertical axis. This fifth angle is useful because the bellows severely restrict the range of

χ. The α angle (along with the very wide Be window) allows out-of-plane measurements,

i. e., measurements at nonzero `. The diffractometer and detector are computer controlled
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Figure 1.2: Top view of Bell Labs/Illinois surface diffraction chamber installed
on beamline X16A of the NSLS. (The beam actually comes in from the top of
the figure, and the detector is toward the bottom center.)

[17], with the computer performing the conversions from reciprocal space to angular space

[16, 18, 19].

The detector for most of the experiments in this thesis was a one-dimensional position-

sensitive detector. Slits defined the angular resolution of the detector. The detector was

aligned to be (nearly) parallel to q⊥, thus integrating along the crystal truncation rod. This

allowed higher resolution for the in-plane directions, acceptable since intensities along the

rods vary slowly. Note that the magnitude of the momentum transfer, |q|, is determined by

the detector position, which moves on both the 2θ and α circles.

Two constraints are needed to map three-dimensional reciprocal space onto the five angles

of the diffractometer, and are chosen to be convenient to surface diffraction. The first

constraint requires the sample normal to be (approximately) horizontal; given the horizontal

polarization of the synchrotron radiation, this minimizes intensity loss due to the polarization
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factor. Also, the divergence of synchrotron radiation from bending magnets is generally

greater in the horizontal direction; a horizontal sample normal allows for maximum resolution

in the surface plane. The second constraint permits a choice of the incident angle or exit

angle (or the choice that they be equal). In this work, the exit angle is usually chosen to

be well above the critical angle, to avoid complications of refraction [20], yet as small as

practical to limit detection of scattering from the bulk, which in turn minimizes background

noise from fluorescence, Compton scattering, and thermal diffuse scattering. The exit, rather

than incident, angle is kept small to better keep the 1D position-sensitive detector parallel

to q⊥ [21].

Besides x-ray diffraction, the chamber has standard surface science tools, including low

energy electron diffraction (LEED), Auger electron spectroscopy, an ion sputtering gun,

sources to evaporate thin films of various materials, leak valves to admit gases such as

oxygen or argon, and pressure gauges (an ion gauge and a residual gas analyzer). To reach

the surface analysis tools, the sample must be moved from the x-ray diffraction position.

The sample sits on the end of the sample manipulator, a long rod which can move the

sample to the opposite end of the chamber. The manipulator can be turned by 90◦ at a

knuckle joint to face the sample toward the LEED, Auger, or sputtering devices. Inside this

rod are two copper wires to carry electrical current, two pairs of Chromel/Alumel wires for

thermocouples, and a coaxial tube through which liquid nitrogen can flow for cooling.

1.2.2 Design and use of load lock

One fundamental challenge to surface science is the cleanliness of the sample environment.

UHV conditions are not easy to achieve, needing good pumping systems and some standard

techniques. The chamber at X16A is pumped by a large turbomolecular pump, an ion

pump, and a titanium sublimation pump (TSP). A smaller turbo pump is dedicated to the

differentially pumped seals at the bellows. The turbo pumps are backed by roughing pumps
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which must begin the pumping from atmospheric pressure; the ion pump and TSP are more

useful in maintaining, rather than achieving, UHV conditions. The process of “baking out”

a chamber after opening it to air is typically required to produce a clean environment. For

the apparatus at beamline X16A, a bakeout entails building an oven around the chamber,

heating it overnight, then slowly letting it cool; often the diffractometer must be realigned

afterwards. This ∼24-hour process is needed to achieve base pressures of <∼ 3× 10−10 Torr.

However, it can become time consuming when similar experiments are repeated in succession

(e. g., deposition of metals on Si [22]; Si wafers are not generally reusable), and is not possible

for samples with low melting points (e. g., Ga, as described in chapter 2).

To overcome this limitation, we have designed and installed a load lock on the chamber

to permit access to the sample without breaking vacuum in the main chamber. A 6” gate

valve (VAT) was installed on the chamber, directly in line with the sample manipulator.

This valve typically remains closed, but is opened when the sample is moved into the load

lock (and to align the sample’s optical surface using a reflected laser beam). Attached to this

valve is a specially designed reducing flange (MDC Corp.) which receives the sample holder.

The sample holder seals against a Viton o-ring which is held in a groove of the reducing

flange. A cross-shaped transfer chamber (MDC Corp.) is attached to the reducing flange;

the sample enters this transfer chamber as the seal is made against the o-ring. Opposite the

sample is a window, so the sample can be carefully observed as it is moved into place; on one

of the side flanges is a small turbo pump which pumps on the transfer chamber. Once the

sample is in place, the pump can be turned off and the transfer chamber removed, allowing

access to the sample.

The sample holder was carefully designed to allow maximal utility in the limited space

available. In the center is a thermal feedthrough, a copper rod brazed to copper braid, which

attaches to a liquid nitrogen cold finger. The copper rod is brazed to a thinwall stainless

steel tube for thermal insulation. Surrounding the thermal feedthrough are six electrical
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feedthroughs (Ceramaseal, Inc.); these are brazed at an angle to reduce the bending of the

conductors. Two of these feedthroughs have copper conductors for sample heating via a

filament (e. g., Cu samples), electron bombardment (e. g., Pt), or a current through the

sample (e. g., Si). The others are two pairs of Chromel and Alumel, for thermocouples.

The tapped holes are for rods from the sample mount, which firmly hold the sample at the

appropriate height. The flat face at the largest diameter seals against the o-ring. Fig. 1.3

is a cross-section of the assembly, with the sample holder approaching the sealed position.

One person (but preferably two people) can use this load lock to change samples in about

three hours. If the flat face of the sample holder seals correctly against the o-ring, pressure

should not rise in the main chamber when the transfer chamber is vented to air. However,

once the sample transfer is complete, the sample and the parts of the load lock exposed to

air usually need degassing.
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Figure 1.3: Sectional view of load lock installed on X16A surface chamber.
The main UHV chamber is to the left, and the transfer chamber (not shown)
on the right. Parts are described in the text.
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Chapter 2

Surface structure of α-Ga(010)

2.1 Introduction

Atoms at surfaces face lower coordination than their bulk counterparts, often accommodating

this change in environment by displacing from locations given by a simple truncation of the

bulk. For clean metal surfaces, the loss of coordination results in a tendency for the outermost

plane of atoms to relax inwards, allowing those atoms to become more fully bathed in the

electronic sea. For semiconductor surfaces, it may result in dangling covalent bonds, a high-

energy situation often resolved by reconstructions which minimize the number of dangling

bonds across the surface’s unit cell, usually with a periodicity which is some multiple of bulk

unit cells. The stable phase of gallium at low pressure, labeled α-Ga, is commonly thought to

contain both metallic and covalent bonds. Investigations of α-Ga surfaces lend insight to the

unusual metallic-covalent duality of this material, and hence to metal-insulator transitions

in general. Here we report an experimental determination of the three-dimensional structure

of α-Ga(010) surface.

Several recent x-ray reflectivity studies have probed the surface structure of (fully metal-

lic) liquid Ga, finding layering of the liquid at the free surface and in contact with a hard
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wall. For the liquid Ga/vacuum interface, Regan et al. [23, 24] measured a layering with

spacing d ∼ 2.6 Å (consistent with atomic layering), with an exponential decay length of

about 6 Å. These lengths remained remarkably constant over the temperature range T = 295

K (supercooled liquid) to 443 K; only the amplitude of the layering decreased with tempera-

ture. Quantum Monte Carlo simulations by Zhao et al. [25] support these results. (Inelastic

scattering of supersonic Ar and Xe atoms from the liquid Ga surface has also been found

to be independent of temperature; the gas-liquid energy transfer remains constant from 40

to 400◦ C [26].) At the liquid Ga/diamond(111) interface, Huisman et al. [27] found a layer

spacing of d ∼ 3.8 Å (approximately the bilayer spacing of b
2

for α-Ga, possibly indicative

of covalent bonding in the liquid) and a decay length of 4 Å. Neither experiment found any

evidence of in-plane ordering of the liquid Ga.

2.1.1 Bulk α-Ga structure

α-Ga is a semi-metal with a low melting point (Tm = 303 K). Its orthorhombic crystal

structure has Cmca symmetry with a = 4.5192 Å, b = 7.6586 Å, and c = 4.5258 Å [28]. In

labeling the orthorhombic axes, we follow the crystallographic convention (Cmca symmetry).

Refs. [29, 30, 31, 32, 33, 34] follow the historic (pseudotetragonal) convention, reversing the

b and c axes and yielding a structure with nonstandard Bmab symmetry. With eight atoms

per unit cell, α-Ga is not very dense and its density increases upon melting. One atom is

located at (0, y, z), where y = 0.1539 and z = 0.0798 in fractional coordinates of the unit

cell [28]. The seven other atomic positions are determined by the (8f) site symmetry:

±(0, y, z); ±(
1

2
, y,

1

2
− z); ±(0,

1

2
− y,

1

2
+ z); ±(

1

2
,
1

2
+ y, z).

That is, two atoms are placed at each y, with x = 0 or 1
2
. As seen in Fig. 2.1, each atom has

a total of seven neighbors in the first coordination shell. One of these neighbors is at the

surprisingly short distance of 2.465 Å. The pairs of atoms connected by this ‘dimer’ bond
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Figure 2.1: Bulk structure of α-Ga, showing the seven nearest-neighbor bonds
for one of the atoms. The covalent bond labeled D has a length of 2.46 Å; the
three pairs of metallic bonds are M1, M2, and M3, and are 2.70 Å, 2.73 Å,
and 2.79 Å long respectively [28]. Bulk truncations to form the two possible
(010) surfaces, A and B, are indicated.

(labeled D in Fig. 2.1) are angled ±17.0◦ from [010], and are generally thought to be bonded

covalently, as discussed below. The six next nearest atoms are paired at distances of 2.70 Å,

2.73 Å, and 2.79 Å; the bonds to these atoms are labeled M1, M2, and M3 respectively.

The one short dimer bond is the most prominent feature of the α-Ga structure, implying

that the Ga2 dimer is the fundamental building block of the crystal. Speculation on the

covalent nature of the dimer bond has existed since the first accurate α-Ga structure de-

termination [35], but direct evidence has been limited. The electrical conductivity is lowest
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along the b axis (i. e., the average direction of the dimer bonds) and much greater in the

(010) plane [36]; thus, the bonds in the (010) plane (labeled M1, M2, and M3 in Fig. 2.1)

are more metallic than the dimer bonds. Breaking of covalent bonds upon melting may

explain the high entropy of melting of α-Ga (almost twice that of metallic β-Ga) [37]. Early

calculations by Heine [38] concluded that the short bond length and low-symmetry struc-

ture is merely the result of a minimum in the pseudopotential which favors a short bond

length despite the large unit cell. However, ab initio, total energy calculations of α-Ga bulk

structure [29, 33] found significant charge accumulation in the dimer bonds. Furthermore,

electronic band structure calculations [29, 33] predicted a pseudogap in the electronic den-

sity of states at the Fermi level, consistent with the semimetallic nature of α-Ga; highly

anisotropic band structure at the Fermi surface, consistent with the anisotropic conductivity

[36]; and a bonding-antibonding transition at ∼ 2.3 eV associated with the covalent bonds,

consistent with optical conductivity measurements [39, 40].

For a fresh perspective on the α-Ga bulk geometry, Häussermann et al. [41] did not assume

the Ga2 dimer is the building block of α-Ga. Instead, they modeled a two-dimensional net

of Ga atoms with the symmetry of a terminally-coordinated deltahedral cluster. Within a

net, the atoms are connected with multicenter (i. e., metallic) bonds, but each atom has one

dangling bond left over. To construct a 3-d structure, 2-d nets are connected at the dangling

bonds, forming two-electron, two-center (i. e., covalent) bonds between the nets. Buckling

these nets to an appropriate angle while maintaining Cmca symmetry produces the (slightly

idealized) α-Ga structure. Maintaining Immm symmetry during the buckling and adding

a glide plane produces the β-Ga structure. Thus, this model succinctly explains the short

length of the covalent bond, the metallic bilayers, and the overall low symmetry of the bulk

structure.
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2.1.2 Previous work on α-Ga(010)

To further understand the properties of this unusual material, we turn to the (010) surface.

Due to the low symmetry of bulk α-Ga, two possible (010) surfaces can be created from

ideal bulk terminations. As shown in Fig. 2.1, splitting the metallic bilayer creates surface

A, while a cut through the dimer bonds creates surface B. Surface A is created by the

breaking of four metallic bonds per surface atom, and B by the breaking of one covalent bond.

These two surfaces are separated by one-quarter of a unit cell, and would presumably have

very dissimilar properties. According to ab initio, total-energy calculations by Bernasconi

et al., [31] neither A nor B’s ideal surface is stable, but the lowest-energy surface is a major

rearrangement of surface A: the top layer of dimers is tilted and stretched, significantly

decreasing the degree of covalency. The top two atomic layers become metallic, and are

comparable to two layers of Ga III (a fully metallic, high-pressure phase of Ga [42]) which

self-wet the α-Ga. Although Ga III is face-centered tetragonal, Bernasconi et al. argue that

two layers of Ga III can deform to match the proposed structure, if the in-plane lattice

parameters are appropriately constrained.

Züger and Dürig [30] performed scanning tunneling microscopy (STM) experiments of α-

Ga(010), finding the atoms of the top layer relax significantly in both the x and z directions.

(We have relabeled the axes from their paper [30] to be consistent with the crystallographic

convention [28].) The degeneracy of the two surface atoms per unit cell is broken, with one

shifted 0.05 Å higher than the other, and thus separated by 2.723 Å (slightly less than the

bulk M2 bond length). STM is inherently limited as a crystallographic tool; its inability to

probe below the top layer of atoms does not allow it to differentiate between surfaces A and

B. STM is, however, ideal for examining surface “defects.” For example, Züger and Dürig

determined that the (010) surface is extremely stable even up to the melting point, without

the appearance of any vacancies, adatom diffusion, or step fluctuations. More significantly,

a step-height analysis of a slightly miscut (010) surface shows all steps are 3.8 Å high. This
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distance is one half the unit cell; no steps of 1.9 Å, or b
4
, were found, clearly demonstrating

that α-Ga(010) terminates as surface A or B, but not a mixture of both.

2.2 Experiment and results

2.2.1 Experimental set-up

In order to conclusively differentiate between surfaces A and B, we used surface x-ray diffrac-

tion to determine the surface structure. The α-Ga single crystal used in this experiment was

grown in UHV conditions, with the (010) surface an as-grown natural facet. Surface x-ray

diffraction measurements were performed at beamline X16A of the National Synchrotron

Light Source, Brookhaven National Laboratory. A load-lock installed on the surface diffrac-

tion chamber [15] allowed introduction of the sample without breaking vacuum (base pressure

of chamber ∼ 7 × 10−10 Torr for this experiment). The surface was cleaned with repeated

cycles of 1 keV Ar ion bombardment, but no annealing, due to the low melting temperature.

882 structure factors were measured at T ∼ 290 ± 10 K, using 9.7 keV x rays. The struc-

ture factors, derived from integrated intensities of diffractometer φ-scans, were corrected for

Lorentz and polarization factors and the variation of the illuminated area on the surface.

These structure factors were symmetry averaged (with an average agreement factor of 9.5%)

to 278 points on ten crystal truncation rods [9]. The structure factor data are shown in Fig.

2.2, along with the A and B bulk terminations and the best fit (described below). With

no superstructure reconstruction on this surface, all these rods pass through bulk diffraction

peaks.

2.2.2 Results

In our model of the surface, the atoms are allowed to relax from their bulk-defined posi-

tions, including the x direction (breaking the bulk’s mirror-plane symmetry in which all
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Figure 2.2: Structure factors of the ten crystal truncation rods measured.
Circles represent data points, solid lines represent the best fit based on a
relaxation of surface B. Dashed and dash-dot lines indicate values for bulk
truncations of surfaces B and A, respectively (χ2

B = 5.5; χ2
A = 13.2). To

maintain the crystallographic convention of labeling the α-Ga axes, we break
with surface science convention and use k as the continuous variable to index
the rods.
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atoms are at x = 0 or 1
2
). However, the two atoms per unit cell at a given y value remain

crystallographically equivalent. Thus, when one atom is displaced by (+∆x, +∆y, +∆z),

its partner will move in (−∆x, +∆y, −∆z). Given this degeneracy, our fitting procedure

averages intensities over equally probable surface domains with opposite displacements in x

and/or z.

Models based on surface A could only give a good fit when the top layer atoms are

substantially expanded away from their neighbors and attain unphysically large Debye-Waller

factors, suggesting the absence of this layer. In fact, the best fit of the surface is a relaxed

version of surface B, with shortened nearest-neighbor metallic bonds and lengthened dimer

bonds. In this model, the atoms of the top five layers of the surface were allowed to relax in

y and z, and the top three layers could also relax in x. Neither further relaxations nor the

breaking of any layer’s degeneracy improved our fit.

In addition to thirteen displacive parameters, our model includes an overall scale factor,

a roughness factor, and three Debye-Waller parameters. Using a standard formulation for

roughness based on a geometric distribution of terrace heights [9], we find a width of
√

σ2 =

12.7± 1. Å (β = 0.74, as defined in ref. [9]) and section 1.1.4. The other height distribution

functions modeling roughness, described in section 1.1.4, did not yield satisfactory fits. This

large value does not necessarily indicate that α-Ga(010) is an intrinsically rough surface;

rather, it is the result of the surface’s apparent inability to anneal below its (low) melting

point. The constant value of the crystal truncation rods’ widths along k indicate that this

roughness is not laterally correlated.

Three Debye-Waller parameters were used to model thermal vibrations. All atoms except

the two of the top layer could be assigned to one isotropic Debye-Waller parameter, which

was fixed at Bbulk = 0.4 Å2. The two atoms on the top layer needed an anisotropic Debye-

Waller factor, separating perpendicular and in-plane vibrations. As expected, the vibrations

perpendicular to the surface were significantly enhanced: B⊥ = 9.6 ± 1.2 Å2 vs. B‖ =
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1.43 ± 0.2 Å2. These high values are probably a result of being only 10–20 K below the

melting point, although B⊥ and the surface roughness are correlated, since both act as q⊥-

dependent scale factors. Assigning independent Debye-Waller factors to additional atoms

neither improved the fit nor altered the refined atomic positions.

Table 2.1 lists the in-plane displacements from bulk and vertical layer changes of our

refined model, yielding a χ2 = 2.43. Fig. 2.3 graphically displays the relaxed positions of the

atoms compared with the bulk coordinates. The magnitudes of the in-plane displacements

∆x and ∆z are generally smaller than the changes in interlayer separation (δd), and de-

crease with depth. The breaking of mirror-plane symmetry is needed to achieve a fit of this

quality, and is qualitatively consistent with the STM and LEED results of Züger and Dürig

[30], but not the LEED work of Hofmann et al. [43] To visualize the effect of the model’s

atomic displacements on nearest-neighbor interatomic distances, Fig. 2.4 plots bond length

vs. depth from the surface for the dimer bond (D) and the three metallic bonds (M1, M2,

and M3). The trend is a decrease in metallic bond lengths and a slight increase in dimer

bond lengths. The differences in bond lengths from bulk values are generally greatest at

the surface, decreasing towards the bulk. The M2 bond, of which there are two per bilayer,

tends to zigzag.

If one assumes that bond length is a measure of bond strength, then the α-Ga(010) surface

is clearly more metallic than the bulk. This enhanced metallicity comes at the expense of the

covalent dimer bonds, which are somewhat weakened (lengthened) relative to bulk dimers.

This finding is in complete accord with photoemission experiments by Hofmann et al. [43],

which found a metallic surface state in the C–X direction of the surface Brillouin zone, for

temperatures above 210 K. Bernasconi et al. [31, 32, 34] predicted α-Ga(010) would be stable

as a fully metallic surface, but their proposed surface had a completely different structure.
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Figure 2.3: Layer-by-layer dissection of our model for the α-Ga(010) surface
structure. Smaller, broken circles represent bulk atomic positions, while the
larger circles represent relaxed positions. Atomic and interlayer displacements
are labeled.
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Figure 2.4: Nearest-neighbor atom separations classified by bond type (as
defined in Fig. 2.1) versus depth from surface. Error bars are displayed when
larger than symbols. Solid vertical lines represent bulk bond lengths; note that
all bond lengths in the shaded region were fixed at bulk values.
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i ∆xi (Å) ∆zi (Å) ( δd
d
)i,i+1 (%)

1 0.0125(36) 0.0084(8) −9.6

2 −0.0054(44) 0.0071(7) 10.2

3 0.0107(27) 0.0014(8) −0.9

4 0 0.0052(7) 0.8

5 0 −0.0037(7) −3.4

Table 2.1: In-plane and interlayer displacements from bulk for one domain of
our model of α-Ga(010), a relaxation of surface B, with χ2 = 2.43. Errors,
based on a least-squares fit, are in parentheses.
d = 1.472 Å for odd i (within one metallic bilayer), and d = 2.357 Å for even
i (between metallic bilayers). ∆x4 and ∆x5 are fixed.

2.2.3 Discussion

We find using surface x-ray diffraction that the structure of α-Ga(010) is a relaxation of

surface B, the surface created by cutting through dimer bonds. To our knowledge, this is

the lowest-symmetry surface structure determined with x-ray diffraction to date. At the

surface, metallic bonds are contracted and covalent dimers are expanded. This result is

difficult to reconcile with the traditional view of Ga2 dimers being the building blocks of

the bulk α-Ga structure, which should lead to an A-terminated surface. It is only reason-

able if the fundamental building blocks are the corrugated metallic bilayers as suggested by

Häussermann et al. [41] However, this surface still leaves one unsaturated dangling bond per

surface atom. These dangling bonds might be satisfied in another α-Ga surface structure,

the c(2 × 2) reconstruction observed with LEED below 210 K by Hofmann et al. [43]; this

speculation invites a full structural study for this low-temperature phase. We hope further

calculations will be performed to confirm the stability and determine the band structure of

the high-temperature B surface of α-Ga(010). Even the bulk structure of α-Ga is difficult to

calculate, since several metastable and high-pressure phases of Ga lie close in energy to the
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stable α phase. Accurately calculating Ga surface structures would therefore be a stringent

test of theoretical methods.
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Chapter 3

Structure of Cu(115): Clean surface

and O-induced facets

3.1 Introduction

The structure of many crystalline surfaces are affected by the adsorption of foreign species

[44], sometimes undergoing minor rearrangements to accommodate the adsorbed atoms or

molecules, in other situations undergoing major transformations. Some adsorbed species in-

duce highly organized reconstructions, while others form incommensurate overlayers. Others

yet can destroy the reconstructions formed on clean surfaces, such as the well-known case

of H on Si(001)(2×1) [45]. In other cases, surface adsorbates lead not to additional order,

but to disorder such as surface alloying (exhibited in certain metal-on-metal systems) [46],

surface roughening, or even amorphization. Under the appropriate circumstances, faceting,

the breaking up of a flat surface into large-scale terraces with particular crystallographic ori-

entations, can occur. Whether the driving force is primarily short-range chemical forces, a

longer ranged charge density wave [47], or surface stress reduction [48], the system attempts

to reach an equilibrium state which minimizes the surface free energy.
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In this chapter we report on structures formed by the influence of oxygen on high-Miller-

index copper surfaces. The reconstructions formed by O on low-index Cu are already well-

known, and are reviewed in Ref. [49]. On Cu(110), O forms a (2×1) reconstruction [50] at

low coverage and a c (6× 2) reconstruction at higher coverage [51]. On Cu(001), O induces

only a (2
√

2×√2) reconstruction [52] (although other superstructures had preliminarily been

reported as discussed in Ref. [52]). A common structural feature of these reconstructions

[53] is the formation of Cu–O chains on these surfaces. The O atoms are fourfold coordi-

nated, with all O–Cu bond lengths about 1.85 Å. These features are conspicuously similar

to the characteristics of bulk cuprite, Cu2O, except the O atoms of these reconstructions are

not centered in Cu tetrahedra [53]. O on Cu(111) induces a more complex series of recon-

structions which are rotated relative to the substrate, yet are comparable to the structure of

bulk Cu2O(111) planes [54, 55]. Recent studies of O/Cu(102)(2×1) have also found evidence

for Cu–O–Cu chains on this surface, although the structure has not been fully determined

[56, 57]. Similar structures have also been found in the oxidation of Cu alloy surfaces [58, 59]

and Cu thin films [60]. One notable exception is that of O/Cu(112), which forms several

reconstructions depending on experimental conditions, none of which have the Cu–O–Cu

chain feature [61].

Unlike these low-index surfaces, most high-index Cu surfaces do not form stable recon-

structions, but rather facet when exposed to oxygen. Most Cu(001) vicinal surfaces form

O/Cu(104) facets [62, 63, 64, 65, 66, 67, 68, 69, 70]. Of course, to maintain the surface’s

macroscopic orientation, other facets must form across the surface as well, such as {001}
for the faceting of Cu(106) [70] and Cu(108) [68]. In this thesis we discuss the O-induced

faceting of Cu(115), in the temperature range 200◦ C to 400◦ C, which forms facets with the

(104), (014), and (113) orientations. Since they are crystallographically equivalent, we im-

plicitly include the O/Cu(014) facets in the following discussions of O/Cu(104) unless stated

otherwise. This chapter describes the surface structure of these facets as well as that of the
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clean Cu(115) surface. This faceting was previously observed by Sotto [71] and by Reiter

and Taglauer [69, 72]. Chapter 4 describes the kinetics of the faceting process as observed

by x-ray diffraction.

Before moving on to the crystallographic structure of the clean and faceted surfaces,

we comment on the ability to observe facet structures using surface x-ray diffraction. As

discussed in section 1.1.3, crystal truncation rods (CTRs) occur because a surface breaks

the periodicity of a bulk crystal. A facet is a small area of the surface with a particular

crystallographic orientation which does not correspond to that of the macroscopic surface.

Yet it is still a surface; equation 1.15 can apply to the faceted region. In doing so, the unit

cell is chosen such that the lattice parameter c is perpendicular to the facet plane (instead of

the bulk surface plane, the case for an unfaceted surface). The scattered amplitude from one

single facet will be small, proportional to the area of the facet. But if many facets of a given

orientation are present on a surface, the scattering from their CTRs will add incoherently

and the intensities become large enough to be observed.

The beautiful STM images of Reiter and Taglauer [69] show that the facets formed by

exposing Cu(115) to O produce three-sided pyramids across the surface; each side is (at

least) moderately well-ordered with well-defined orientations of (104), (014), or (113). One

such pyramid is diagrammed in Fig. 3.1a. The three facets are clearly distinguishable in the

original micrograph[69], as are the high degree of atomic ordering on the {104} facets and

the relative disorder on the (113) facets.

We have observed CTRs from these three facets with surface x-ray diffraction, as demon-

strated in Fig. 3.2. Fig. 3.2a is a cross-section through reciprocal space at constant `, parallel

to the (115) surface and slightly above a bulk Bragg peak. This surface was prepared by

exposing Cu(115) at 300◦ C to ∼ 20 L O2 (1 L = 1 Langmuir = 10−6 Torr sec). No longer

is this surface (115)-oriented; if it were, a CTR would pass through the center of this plot

at h = 6, k = 0 (see below). Instead, the plot cuts through three rods, all of which are
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Figure 3.1: a) Schematic real-space model of one faceted pyramid. These
structures were observed with STM in Ref. [69]. The surface normals of the
(104), (014), and (113) facets are shown. The vertical scale is significantly
exaggerated. b) Schematic reciprocal-space diagram of CTRs due to the three
facets in a). The ` = constant plane below the bulk Bragg peak is the plane
of Fig. 3.2b.

angled towards the bulk peak and perpendicular to the plane of their particular facet. On

the lower side of the Bragg peak, the peaks are on the opposite sides, as shown in Fig. 3.2b.

Fig. 3.1b depicts the constant-` plane cutting through the three CTRs below a bulk peak.

The well-defined orientations of the facets permit structure factors to be measured along the

rods of each facet; the crystallographic analyses of these facets are in sections 3.3 and 3.4

below.

In labeling the axes for the bulk surface and the two facets discussed in this chapter, we
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Figure 3.2: a) A cross-section through reciprocal space above the (603)115 bulk
point, at ` = 4. The three spots are located at the intersection of the ` = 4
plane and the CTRs of the three facets formed by exposing O to Cu(115),
as labeled. No (115) rod is visible at h = 6, k = 0, indicating the surface is
entirely faceted. b) The same mesh scan, but now below the Bragg peak, at
` = 2. Each spot is now on the reverse side of the figure. The dotted line
roughly indicates the scans used in Fig. 4.2.

follow standard surface science practice of labeling the surface normal as the z axis. In the

surface plane, we choose y parallel to the steps on these vicinal surfaces and +x pointing

toward an upward step. Thus, our choice of coordinate system changes for each surface. The

coordinates x, y, and z are given in units of the appropriate surface unit cell.

3.2 Clean Cu(115) surface structure

Ideal Cu(115) is a regularly stepped vicinal surface of Cu(001). Compact step notation [73]

describes its structure as 3(001)×(111), meaning the surface is composed of {001} terraces

(three atoms long) separated by <111>-type (closed-packed) steps along the y direction.

The angle between the [115] and [001] surface normals is 15.8◦. Fig. 3.3 illustrates the bulk-

terminated Cu(115) surface, highlighting the three inequivalent atomic sites on the surface

38



S T
CC

S2
T2

C2C2
S3

T3
C3

S4
T4C4

S5

a

x

z

C3

C4

Figure 3.3: Bulk-truncated structure of a clean, ideal fcc(115) surface. z is
the surface normal; x runs perpendicular to the steps in the surface plane; y
is parallel to the surface steps (and perpendicular to the page). The surface
atoms thus have small vertical separations, accounting for the small interlayer
spacing (dbulk = 0.696 Å). Atoms at the surface are labeled according to their
location at the step (“S”), on the terrace (“T”), or at the corner below the next
step (“C”) [74, 75]. Subsurface atoms are labeled according to the surface atom
above them and their depth (in atoms) below the surface (along the column
of similar atoms).

[74], which all have different coordination numbers. Atoms on the step sites (“S” in Fig. 3.3)

have seven nearest neighbors, while atoms at the terrace sites (“T”) have eight, and atoms at

the corner sites (“C”) have ten. All other atoms are in fully coordinated “bulk-like” sites. In

the centered orthorhombic surface unit cell, each atom at (x, y, z) has a crystallographically

equivalent atom at (x + 1
2
, y + 1

2
, z), in units of the surface unit cell.

Because of the high Miller indices of this surface, the reciprocal space notation is rather

complicated. The transformations between standard fcc coordinates and (115) surface coor-

39



dinates are given by the following matrices:




h

k

`




(115)

=




5
2

5
2

1

−1
2

1
2

0

−1 −1 5







H

K

L




fcc

(3.1)

and 


H

K

L




fcc

=
1

27




5 −27 −1

5 27 −1

2 0 5







h

k

`




(115)

, (3.2)

with lattice parameters a = 13.281 Å, b = 2.556 Å, and c = 18.783 Å. Thus, the (111)fcc

bulk Bragg peak is now indexed as (603)115, as shown in the reciprocal-space map of Fig.

3.4. Bragg peaks are separated in ` by 27 reciprocal lattice units. That is, there are other

Bragg peaks at (6,0,30)115 and (6,0,24)115, although these peaks are far beyond the q-range

accessible in this experiment. On the other hand, the interlayer spacing is deceptively small:

dbulk = 0.696 Å, since there are 27 layers of atoms per unit cell. Atoms in adjoining planes

have, of course, significant lateral separation, as seen in Fig. 3.3.

For vicinal surfaces, it is more natural to describe vertical displacements in terms of

interatomic separation (projected onto the z axis) than to speak of interlayer spacings. For

atoms in adjacent “layers” which have horizontal separations much larger than their vertical

separations, the concept of interlayer spacing is less meaningful. The change in relative

vertical position of an atom in layer i compared to an atom in layer i + 1 can be defined as

∆zi

z0

=
δdi,i+1

dbulk

=
(zi − zi+1)− z0

z0

. (3.3)

zi is the vertical position of the atom in the coordinates of the surface unit cell, and, for the

Cu(115) surface unit cell, the bulk interlayer spacing z0 = 1
27

. Use of ∆zi instead of δdi,i+1

emphasizes that atoms on vicinal surfaces may not be directly above the atom in the next

layer down.
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Figure 3.4: Reciprocal space map for an fcc(115) surface, in the k = 0 plane.
Shaded circles represent Bragg points, labeled in standard fcc units (lower,
italics) and 115 surface units (upper, straight).
Axes for standard fcc orientation (dashed) and for 115 surface orientation
(solid) are in bold. The narrow, tilted lines represent 115 crystal truncation
rods. Note this figure is rotated from Fig. 3.3.

3.2.1 Previous work on Cu(115)

Work on the clean Cu(115) surface originally focused on the stability of this stepped surface,

rather than the crystallographic structure. Time-of-flight helium atom scattering by Ernst

et al. [76] determined that this surface does not undergo a roughening transition, as previously

thought. Energy analysis was essential to this experiment, given the large amount of inelastic

scattering from this surface at high temperatures.

Low-Energy Electron Diffraction (LEED) has been performed on Cu(115), and is inter-

preted as a complex multilayer relaxation [77]. The measured relaxation between the first

and second lattice plane is ∆z1

z0
= −16.5%, and relaxations continued to the sixth layer.

Table 3.1 lists the results of this experiment. Although the fractional change ∆z1

z0
is very
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Percent relaxation
(

∆zi

z0

)
, determined by:

LEED [77] tight-binding energy embedded atom surface x-ray

calculations [78] minimization calculations [75] diffraction

Layer calculations [79]

1 −13.2 −8.0 −12.7 −9.46 −15.4

2 −6.1 −5.1 −10.3 −7.87 +8.1

3 +5.2 +7.0 +10.8 +8.76 −1.1

4 −0.1 −3.3 −6.3 −4.19 −10.3

5 +2.7 −3.1 – −4.04 +5.4

6 – – – +3.44 −0.7

7 – – – −1.67 −6.9

8 – – – −1.14 +3.6

Table 3.1: Interlayer relaxations of Cu(115). These were determined by LEED
experiments [77], tight-binding calculations [78], energy minimization calcu-
lations [79], embedded atom calculations [75], and surface x-ray diffraction
(present work). Ref. [75] and the present work also explicitly include lateral
displacements.

large, the actual atomic displacement is not so dramatic since, as mentioned above, dbulk is

relatively small.

This LEED analysis found, within error bars, no lateral displacements of the Cu atoms,

although such relaxations are not a priori forbidden. Since no reconstruction was observed

in either in-plane direction, we expect on symmetry grounds that atoms remain at y = 0 or

1
2

(grey or black circles in Fig. 3.3). The lack of mirror symmetry in the x direction allows,

in general, for atoms to relax in this direction. LEED is typically more sensitive to interlayer

displacements and surface x-ray diffraction to lateral displacements, so perhaps the LEED

data could be sufficiently fit without including lateral displacements in the surface model.
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The structure of Cu(115) has been studied theoretically by Loisel et al. [78] using tight-

binding calculations, Hammonds and Lynden-Bell [79] using energy-minimization calcula-

tions, and by Tian and Rahman [74] and Durukanoglu, Kara, and Rahman [75] using the

embedded atom method. All methods found a qualitatively similar relaxation pattern in the

interlayer spacing, with ∆z1

z0
not as extreme as determined by LEED [77]; results are shown

in Table 3.1. More recent embedded atom calculations [80] are in very good agreement with

Refs. [74, 75]. Furthermore, Rahman and coworkers [74, 75] found a common characteristic

in several Cu(001) vicinal surfaces: the vertical displacements of subsurface (bulklike) atoms

follow the trend set by atoms of the topmost layer. The displacement of the surface atoms

are repeated inwards with an exponentially decaying scale factor. Multilayer relaxations of

this sort are common in surface structure, but vicinal surfaces present a complication: for

Cu(115), each atom is almost vertically on top of the atom of the third layer below it (be-

sides an offset of 1
2

in y). Tian and Rahman [74] used the vertical displacements of the top

atoms, ∆zm (where m = S, T, or C, the three surface sites defined in Fig. 3.3) to describe

the displacements of the lower atoms:

∆zm,n = ∆zm exp[−κm(n− 1)]. (3.4)

n is the depth of the atom beneath the surface (Fig. 3.3), and κm is an exponential decay

factor. The form of Eq. 3.4 is the general solution of the Poisson equation, which will be the

exact solution in the limit of continuum elasticity theory. Although Ref. [74] did not consider

lateral displacements, Ref. [75] did, finding the trend of Eq. 3.4 approximately holds. The

small displacements in x did not follow any such trend.

Durukanoglu, Kara, and Rahman [75] also calculated the surface phonon spectrum of

Cu(115) and similar Cu(001) vicinal surfaces, finding highly anisotropic thermal vibrations

at the surface. The in-plane phonon modes perpendicular to the steps were particularly

softened, resulting in a large Debye-Waller factor in x for the step atoms (symbol: BS
x ; the

subscript represents direction and the superscript identifies the atom). Calculated vibrational
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amplitudes in x for terrace and corner atoms were progressively smaller, reflecting their

greater coordination. Vibrational amplitudes in y were nearly identical for the S, T, and C

atoms, and in z the trend was reversed from x, with the corner atoms having the largest mean

square amplitude. These results appear consistent with He-atom scattering experiments [81]

which mapped out the surface phonon dispersion curves of Cu(115) and found a low-energy

longitudinal mode at the zone boundary.

3.2.2 Present experiment and results

In order to determine the surface structure of Cu(115), we have performed a surface x-

ray diffraction experiment at beamline X16A of the National Synchrotron Light Source,

Brookhaven National Lab. The surface was prepared by chemical polishing, then by cycles

of sputtering with 1 keV Ar+ ions and annealing to 550◦ C, until terraces on the surface were

>∼ 700 Å, as determined by the width of the crystal truncation rods. The structure factors,

derived from integrated intensities of diffractometer φ-scans, were corrected for Lorentz and

polarization factors and the variation of the illuminated area on the surface. 123 structure

factors along five crystal truncation rods [9] were measured at room temperature using 8.5

keV x rays. Structure factors for negative ` are achieved through inversion symmetry using

the Freidel relation Fhk` = Fhk`, and crystallographically equivalent structure factors were

symmetry averaged together using plane group pm: Fhk` = Fhk` because of mirror symmetry

in y.

Fig. 3.5 displays the structure factors measured from the Cu(115) surface. The dashed line

represents the calculated scattering from a bulk-truncated Cu(115) surface; the only fitting

parameters are an overall scale factor, a roughness parameter, and one isotropic Debye-Waller

factor. The ideal bulk truncation made a reasonable preliminary fit, but the data had clear

oscillations which called for a model with atomic displacements and additional Debye-Waller

factors for the surface atoms. On this vicinal surface, the most general model has many
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Figure 3.5: Structure factors of the five crystal truncation rods of clean
Cu(115). Circles represent data points, the dashed line is a fit for an abrupt
bulk termination, without atomic displacements or multiple Debye-Waller fac-
tors (χ2 = 2.47); and the solid line is the best fit as described in the text
(χ2 = 1.40).
a) (11`) rod, whose bulk peak is at ` = 5; also (80`) rod (data marked by ×
instead of circles), with bulk peak at ` = 13.
b) (20`) rod, whose bulk peak is at ` = 10.
c) (40`) rod, whose bulk peak is at ` = −7.
d) (60`) rod, whose bulk peak is at ` = 3.
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atoms with independent displacement parameters, e. g., 14 free displacement parameters for

the top seven layers of atoms (all of these atoms being close to the surface). Refining such a

model produced a physically unreasonable fit: the distance from atom S (the step atom) to

any of its nearest neighbors was greater than 2.6 Å, compared with the bulk bond length of

2.556 Å; the Debye-Waller factor for this atom also had a large, negative value (which has

no physical meaning). Other interatomic distances on this surface became less than 2.2 Å.

We conclude that this model provided too many degrees of freedom for the available data.

To attempt a more realistic description of the Cu(115) surface, one can choose to fit

only one or two displacements (the approach taken in Ref. [77]), or to provide a constraint

to the fitting parameters. In this work, we developed a model which included several free

parameters combined with some physical insight. Specifically, this model limited all vertical

displacements to the form of Eq. 3.4. Thus, an arbitrary number of atoms were allowed to

relax in the z direction and be described by only four parameters: the z displacements of

the step, terrace, and corner atoms (∆zS, ∆zT , and ∆zC respectively) and one decay factor

κ, using the definitions of Eq. 3.4 [74, 75]. In practice, we allowed vertical displacements to

the fifteenth layer of atoms, and used one common κ instead of separate decay factors for

the S, T, and C atomic columns.

In addition to these vertical displacements, displacements in x for the top four atoms

and four Debye-Waller factors were needed to satisfactorily model the surface. The values

of the refined parameters are listed in Table 3.2, resulting in a fit to the data of χ2 = 1.40

and graphed as the solid line in Fig. 3.5. The simple constraint of Eq. 3.4 was apparently

sufficient to constrain the model and still explain the observations. As expected, the step

atom is significantly contracted inward, towards its neighbors, in agreement with the LEED

experiment [77]. The fit was not very sensitive to the decay parameter, so κ was fixed at

0.4, as suggested by the numerical calculations and simple force-constant model of Ref. [74].

As predicted by calculations of the phonon spectrum of the Cu(115) surface [75], an
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vertical displacements lateral displacements Debye-Waller factors

∆zS

z0
= −0.154 ∆xS = −0.0009 BST

x = 7.6 Å2

∆zT

z0
= +0.081 ∆xT = −0.0011 BST

yz = 3.3 Å2

∆zC

z0
= −0.011 ∆xC = −0.0075 BC,S2 = 1.9 Å2

(κ = 0.4) ∆xS2 = 0.0035 Bbulk = 0.55 Å2

Table 3.2: Refined parameters for the physically realistic model of Cu(115),
as described in the text, yielding χ2 = 1.40. Structure factors calculated from
this fit are the solid lines in Fig. 3.5. ∆xi is the displacement of atom i from its
bulk lattice-defined position in units of the surface unit cell. ∆zj is the vertical
displacement of atom j from the atom at the next deepest site compared to
the bulk displacement, as defined in Eq. 3.3. Uncertainties were about 0.03
for ∆z

z0
, and 0.001 for the ∆x parameters.

anisotropic Debye-Waller factor for the surface atoms significantly improved the fitting.

Instead of attempting a detailed comparison with the results of Ref. [75], we limited the

number of Debye-Waller factors to the minimum needed to obtain a satisfactory fit. We

found that four such parameters were sufficient: two anisotropic Debye-Waller factors (one

for the x direction, and one for y and z) shared by atoms S and T; one isotropic factor

shared by atoms C and S2; and a value of Bbulk = 0.55 Å for all other atoms. Additional

Debye-Waller parameters did not result in an improved fit. The resulting values are shown

in Table 3.2, and do follow the general trend of Ref. [75].

In addition to the above parameters, our model included a roughness factor based on

the geometrical model of roughness [9]. The best fit yielded β = 0.51, a large value even

for a metal. However, this, like the large values of ∆zi

z0
, was due to the very small interlayer

spacing of this surface; the root mean square roughness was only 1.44 Å.

The low symmetry of this vicinal surface produced many atoms near the surface which

had crystallographically independent x and z coordinates. Simply allowing these coordinates

to vary independently did not produce a physically realistic fit, but a model based on elastic
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interactions did. One effect of including Eq. 3.4 is to limit unrealistic interatomic distances;

most of the refined distances in the model ranged from 2.49 Å to 2.57 Å. Prevention of

unrealistic interatomic distances can also be addressed by adding an “energy cost” to the

goodness of fit parameter. That is, bond lengths (or also bond angles) far from bulk values

add to the χ2 of a model, ensuring a preference for realistic interatomic distances. This

procedure has been employed [82] in the solving of complex reconstructions on semiconductor

surfaces using the Keating model of interatomic potentials [83]. On the other hand, Eq. 3.4 is,

to some extent, an oversimplification of the true multilayer displacements. Surface atoms will

likely relax with some deviation from an exponential decay, which this model does not take

into account. A more complete structure determination would require data from a greater

range of reciprocal space, implying a higher x-ray energy. Unfortunately, more energetic x

rays than those used in this experiment would cross the Cu K adsorption edge, resulting in

a high fluorescence background and making accurate integrated intensities more difficult to

measure without an energy-sensitive detector.

3.3 Structure of O/Cu(104) facets

3.3.1 Previous work on O/Cu(104)

Unlike Cu(11n) surfaces, Cu(104) is a (001) vicinal surface with <010>-type steps, i. e.,

4(100)×(010) in compact step notation [73]. The first four rows of atoms are all exposed

to the surface (i. e., have reduced coordination); the steps are not close-packed, resulting

in surface which is not expected to be thermodynamically stable [84]. Upon exposure to

oxygen, however, this surface becomes extremely stable [85]. The O/Cu(104) orientation is

so strongly preferred that many nearby Cu(001) vicinal surfaces grow O/Cu(104) facets when

exposed to O. Formation of O/Cu(104) facets has been observed by O dosing of many Cu

surfaces, including Cu(115) [71, 69], Cu(117) [67], Cu(1,1,11) [67], Cu(1,1,16) [66], Cu(102)
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[65], Cu(106) [70], Cu(108) [68, 67], and Cu(418) [66]. As mentioned above, other facets

must also form in order to maintain, on average, the macroscopic orientation of the surface.

Due to the <010> orientation of the steps of the (104) surface, the lateral separation

of Cu step atoms (along a step) is 3.61 Å. This exposes gaps along the step edges which

provide an ideal adsorption site for O, since 1.85 Å (≈ 3.61 Å /2) is the Cu–O bond length

in Cu2O and in several O-induced Cu reconstructions [53]. In fact, the O–Cu–O linear

chains which form along these steps are often considered the stabilizing building block of the

O/Cu(001)(2
√

2×√2), O/Cu(110)(2×1), and O/Cu(110)c (6×2) reconstructions [53]. (Our

model of the O/Cu(104) surface, in Fig. 3.7 below, shows the surface unit cell and labels the

atomic rows.)

Despite the importance of the (104) surface in the O on Cu system, a full structural

determination has not been performed, and studies to date remain ambiguous. Algra et al.

[86] found, using low energy ion scattering, only one type of O adsorption site in Cu(104) for

low O exposures, concluding that O2 adsorbs dissociatively into the hollow sites of the steps.

A photoelectron diffraction study by Thompson and Fadley [85] confirmed that O resides at

the two-fold step sites at low exposure, but at higher coverage also occupies a (001) terrace

site, as proposed by Perdereau and Rhead [64]. More recently, Robinson, Vlieg, and Ferrer

[52] hypothesized that O would sit in the hollow sites of the first and third Cu rows, and

that the fourth Cu row would be missing; the (001) terraces on the vicinal surface would

then have a structure similar to the (2
√

2×√2) reconstruction of O/Cu(001) (schematically

diagrammed in Fig. 3.7c). In the (2
√

2 × √
2) reconstruction, the O atoms are fourfold

coordinated; if O atoms sit at the center of the first and third-row hollow sites of unrelaxed

Cu(104), then the O atoms in the third row have five Cu neighbors unless the fourth Cu row

is removed. Rutherford backscattering and channeling experiments [71, 87] were not able to

directly observe O on the Cu(104) surface, but did find a large outward expansion of the top

atomic layers of ∼ 0.3 Å. A missing row was not needed to interpret this data, yet the data
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were consistent with the third or fourth row missing.

Several STM studies have examined the structure of O/Cu(104) facets formed by ex-

posing various Cu(001) vicinal surfaces to O. Lloyd and Woodruff [68] initially labeled the

O/Cu(104) facets of Cu(108) as missing the second Cu row, based on one low-resolution STM

image. Knight, Driver, and Woodruff [70] reinterpreted that image as more likely missing

the fourth row of Cu, consistent with their higher quality images of O/Cu(104) formed by

faceting of Cu(106). Reiter and Taglauer [69] interpreted their images of O/Cu(104) from

the faceting of Cu(115) as missing the fourth Cu row.

3.3.2 Present experiment and results

In order to conclusively determine the surface structure of O/Cu(104), we have performed

surface x-ray diffraction on the (104) [and equivalent (014)] facets. The faceted surface was

prepared by exposing the clean Cu(115) surface (prepared as described in section 3.2.2) to

∼50 L O2 at 308◦ C. Faceting was observed with the x rays, as described in Chapter 4, until

(104), (014), and (113) facets had formed.

For this preparation, the coherence length in x (perpendicular to the steps) on the (104)

facets was approximately 400 Å, as judged by CTR halfwidths; in y, the coherence length

was approximately 700 Å. These lengths on the (113) facets were approximately 300 Å in x

by 1000 Å in y. These dimensions varied with preparation conditions (i. e., temperature, O2

partial pressure, total O2 dose). All structure factor measurements were performed after O

dosing ended and the sample cooled to room temperature.

The crystal truncation rods arising from these facets were no longer perpendicular to the

Cu(115) surface, but instead each set of rods were perpendicular to the facet plane from

which they arose, as shown in Fig. 3.1. The (104) and (014) CTRs are not parallel to the

plane of Fig. 3.4; the (113) CTRs are in this plane, but are tilted 25.2◦ from [001]. To index

these rods, we switched from (115) surface notation to the notation of the particular facet.

50



The reciprocal space transformation from standard fcc units to the (104) surface units is

given by 


h

k

`


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=
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, (3.5)

or inversely, 

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(104)

. (3.6)

With this transformation, (111)fcc = (603)115 = (401)104. Bulk peaks for the (104) surface

are separated in ` by 17 reciprocal lattice units, and are connected by CTRs perpendicular

to the (104) surface. In this tetragonal unit cell, a = c = 14.90 Å; b = 3.615 Å.

Since the average surface orientation, across many facets, is still (115), ` = 0 no longer

represents the plane of grazing incidence or exit for the x rays relative to the (104) planes.

For some rods, measurements can be made with the grazing incidence geometry for ` < 0.

In other cases, ` ∼ 0 is inaccessible. But for most of the ` < 0 measurements in Fig. 3.6, we

use the inversion symmetry |Fhk`| = |Fhk`|.
Along with structure factors from O/Cu(104), we measured the structure factors from the

crystallographically equivalent O/Cu(014) facets, finding, as expected, the data from both

facets agree well. Therefore, to achieve a better data set we averaged the measurements

from the two facets together, along with the symmetry equivalents from each facet. In all,

we measured 319 structure factors using 7.9 keV x rays, which symmetry average to 127

data points (average agreement = 5.2%) along the five inequivalent rods shown in Fig. 3.6.

The structure factors along each truncation rod are strongly modulated, indicating a

drastic modification of the surface structure away from a simple bulk truncation (represented

as the dashed line in Fig. 3.6). Although the oscillations may be suggestive of a missing row,

51



Figure 3.6: Structure factors of the five CTRs of O/Cu(104) facets. Circles
represent data points, the dashed line is a fit for an abrupt bulk termination,
without atomic displacements or multiple Debye-Waller factors (χ2 = 37.3);
and the solid line is the best fit as described in the text (χ2 = 5.5).
a) (02`) rod, whose bulk peak is at ` = 0.
b) (20`) rod, whose bulk peak is at ` = 8.
c) (31`) rod, whose bulk peak is at ` = −5.
d) (51`) rod, whose bulk peak is at ` = 3.
e) (80`) rod, whose bulk peak is at ` = −2.
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atom layer i ∆zi ∆xi Debye-Waller factors

O 1 +0.028 −0.003 ∼0

O 3 +0.015 +0.016 ∼0

Cu 1 +0.025 −0.0157 1.8 Å2

Cu 2 +0.019 +0.0125 1.8 Å2

Cu 3 +0.023 +0.0022 1.8 Å2

Cu 4 – +0.0046 0.55 Å2

Cu 5 – +0.0036 0.55 Å2

Table 3.3: Refined parameters for O/Cu(104) surface structure, resulting in
χ2 = 5.5. Displacements are in fractions of the surface unit cell (a = c = 14.90
Å).
For Cu atoms, displacements are relative to bulk-inferred positions. Displace-
ments for O atoms are relative to the Cu atoms of the same layer (besides
the displacement of 1

2
in y). Uncertainties for Cu atom displacements are

∼ 2×10−3 for ∆zi, and ∼ 1×10−3 for ∆xi, and about twice that for O atoms.

no such structure fits the oscillations on all five rods. Instead, our best fit to the data is a

model with all rows present, and O atoms in the hollow sites of the first row (step edge) and

third row (terrace). The displacements of the atoms in the first five rows are listed in Table

3.3, with calculated structure factors displayed as solid lines in Fig. 3.6. Excluding the O

atoms from the model, while refining the same number of Cu displacements, results in a χ2

value more than double that of our best model.

In our model of the surface, the first three rows of atoms relax upwards, away from the

bulk. The average spacing between atoms in the top three rows and atoms in lower layers

increases by ∼9%, fully consistent with ion channeling studies [87]. With the first three rows

expanding away from the bulk, the comparison with the O/Cu(001)(2
√

2×√2) superstruc-

ture (Fig. 3.7c) remains partially valid, even without the fourth row absent. Apparently, the

expansion of the first three rows carries a lower energy cost than removing the fourth row.
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a) top view: O/Cu(104)

b) side view: O/Cu(104)

c) side view: O/Cu(001)(2√2×√2)

2
4

1
3

6 7
5

8

Figure 3.7: a) Plan and b) side views of refined O/Cu(104) surface structure.
Cu atoms are hollow; O atoms are filled. Gray atoms in b) are O atoms hidden
by Cu. The surface unit cell is outlined in a), and the rows are numbered in
b).
c) Side view of (unrelaxed) O/Cu(001)(2

√
2×√2) structure, for comparison.

Views of the relaxed structure are shown in Fig. 3.7.

One notable result of this analysis is that the facets are, within error, completely smooth:

√
σ2 = 0 ± 0.1 Å, indicative of the stability of the O/Cu(104) facets. That is, on the

length scale of the facets, the steps on the surface are straight (unkinked) and unbunched,

in agreement with the micrographs of Reiter and Taglauer [69]. While defects such as

dislocations and impurities on the clean surface might be sites where facets nucleate, they

will not occur on the facets themselves, resulting in very smooth facet surfaces.
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Besides a Debye-Waller factor for the bulk Cu atoms of Bbulk = 0.55 Å2, the Cu atoms of

the first three rows had a separate factor, Bsurface = 1.8± 0.2 Å2. The refined Debye-Waller

factor of the O atoms was zero within error bars. In all, four displacement parameters were

used for O atoms and eight for Cu atoms. Due to the fewer electrons in O than in Cu

and the correspondingly smaller form factor, the positions of the O atoms are determined

with slightly lower certainty than the Cu positions. Despite this model’s excellent ability

to reproduce the modulations of the structure factor along all five rods, the goodness-of-fit

parameter is relatively large: χ2 = 5.5. We feel this is due not to any deficiency in the

model, but to an underestimation of the error bars associated with the highly reproducible

data. The χ2 test weights each data point with the inverse square of the error, yielding a

high goodness-of-fit measure even for good fits to data with small uncertainties.

We do find one striking dissimilarity with the O/Cu(001)(2
√

2×√2) structure, in that the

two O sites (in the first and third rows) are inequivalent. The O in the third row (terrace site)

is four-fold coordinated with bonds ∼1.84 Å to the Cu atoms in the second, third, and fourth

rows; this is almost a planar structure quite unlike the O coordination on the (2
√

2 × √2)

structure or in bulk Cu2O. The Cu–O–Cu bond angles for this O (row 3) are 160◦ parallel to

the step edge (both Cu atoms in row 3) and 152◦ perpendicular to the step (Cu atoms in rows

2 and 4). The O in the first row (step-edge site) is only two-fold coordinated; it is located

1.85 Å from the adjoining Cu step atoms, but then >2.4 Å from the next nearest Cu atoms.

Cu–O chains, without the fourfold coordination of O, are thus the main feature at this O site.

The Cu–O–Cu bond angle along this chain (parallel to the step) is 154◦. Table 3.4 details

the nearest-neighbor Cu–O bond lengths resulting from our fit. This marked asymmetry in

binding sites is not too surprising; on this stepped, vicinal surface, the O adsorption sites

should not be degenerate as are the sites on the symmetrical (2
√

2×√2) surface. The steps

on this vicinal surface produce the asymmetry in O adsorption sites observed in this work

and previous studies [86, 85]. We expect this asymmetry, not present on ideal (non-miscut)
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O atom site Cu location dO−Cu (Å) coordination

step (row 1) row 1 1.855 2

row 2 2.410 1

row 5 2.540 1

terrace (row 3) row 2 1.847 1

row 3 1.837 2

row 4 1.842 1

row 6 2.420 1

Table 3.4: O–Cu bond lengths for the two O adsorption sites on Cu(104), with
uncertainties of about 0.04 Å, based on refined atomic coordinates (Table 3.3).
In contrast, if the surface Cu atoms were unrelaxed and the O atoms were
centered in the hollow spot of the step or terrace, then dO−Cu = 1.807 Å for
each bond length in the table.

O/Cu(001)(2
√

2 × √2), significantly affects any rehybridization of Cu–O bonds [88]. This

should be apparent in valence-band spectroscopy and in any future theoretical calculations

which compare the total energies of the various O/Cu(104) surface structure models.

3.4 Structure of O/Cu(113)(3×1) facets

3.4.1 Previous work on O/Cu(113)

In contrast to the heavily studied O/Cu(104) system, very little work has been published

regarding O/Cu(113), and most of that has concentrated on the (113) facets produced by

exposing Cu(115) to oxygen. STM images by Reiter and Taglauer [69] show a moderately

disordered structure on the (113) facets, with stripes about two atoms wide running parallel

to the y direction. These stripes appear to be separated by about four monatomic Cu(113)

steps; however, variations in stripe width and separation are clearly visible across the larger
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area scans. Along a stripe, atoms appear to be grouped in “blocks” about three atoms

long, with gaps between the blocks about 1.6 Å wide. Occasional bright spots on the blocks

were interpreted as “superatoms” elevated ∼ 0.8 Å above the other atoms in the block.

Based on the separation of stripes, length of blocks, and relative positions of neighboring

“superatoms,” Reiter and Taglauer described this surface as a c (12× 7) reconstruction.

Milne [89] also observed the formation of (113) facets due to O adsorption on two vicinal

Cu surfaces. Electron microscopy indicated that O adsorption caused Cu(315) to form (305)

and (113) facets, and RHEED determined that O caused Cu(112) to facet to (223) and

(113) orientations [89]. No structure was proposed for these facets, and as they appeared

only occasionally, they were likely metastable. During O2 dosing on a single crystal Cu(113)

surface, Fu and Somorjai [90] observed a p (2×1) reconstruction for O coverages of 0.4 to 0.5

monolayers, which reduced to (1×1) at higher coverages. Two nondegenerate O adsorption

sites were identified based on desorption asymmetries, but no structural study was performed.

3.4.2 Present experiment and results

The disordered nature of the O/Cu(113) facets precluded the possibility of a full crystallo-

graphic analysis, yet as Fig. 3.2 clearly shows, (113) CTRs were present in our data; the

surface was, to some degree, flat and ordered. As described in section 3.3.2 for the case of

O/Cu(104), we measured structure factors along six CTRs, which symmetry averaged to the

four shown in Fig. 3.8a-d. Furthermore, we found a (3×1) reconstruction, indicating an or-

dered superstructure in x but not in y. Some in-plane (|`| <∼ 1), third-order structure factors

are shown in Fig. 3.8e, while Fig. 3.9 plots structure factors of six fractional order rods. Care

was taken during measurement to exclude contamination from third order harmonics in the

x-ray beam; such features were much narrower and more intense than the superstructure

rods, and therefore straightforward to isolate. In all, 300 structure factors were measured,

symmetry averaging to 218 inequivalent points with an average agreement of 5.9%. The

57



conversions between standard fcc coordinates and (113) surface coordinates are given by the

matrices 
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and 
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with resulting lattice parameters a = 8.477 Å, b = 2.556 Å, and c = 11.989 Å.

Since all third-order rods are present (not just 3h + k = integer), the (3×1) reconstruc-

tion was noncentered. Thus, each (bulklike) layer of the surface contained six symmetry-

inequivalent atoms. The modulation of the fractional order rods in Fig. 3.9 indicated mul-

tilayer relaxations were important in the structure of this reconstruction. The refinement

of this many atomic positions presents a daunting task even for a well-ordered surface; the

disorder made a complete crystallographic description unfeasible.

While our model does not determine all atomic positions on this surface, it does succeed

in describing some features of these facets. We indeed found that a model containing stripes

of Cu atoms fit the data best, in agreement with the STM work [69]. However, the STM also

showed the atoms in the stripes did not have well-defined y values. The complete absence of

superstructure reflections in k agreed with our interpretation of the STM images, that the

stripes had no long-range order in the y direction. Our model attempted to account for the

disorder in y by performing an incoherent average (summing of intensities) over two model

surfaces. In each surface, the atomic positions were identical except for three Cu atoms,

which exchanged y values. That is, if for one model surface, one “disordered” atom was

located at (x, 0, z) then for the other, the atom was at (x, 1
2
, z). This model is an obviously

limited attempt at treating the surface’s disorder, and ignores the variations in stripe width
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Figure 3.8: a-d) Structure factors of the four CTRs of O/Cu(113) facets.
Circles represent data points; dashed lines, the fit for an abrupt (1 × 1) bulk
termination; and solid lines, the best fit as described in the text. Bulk peaks
are located at (113), (205), (312), and (401).
e) Structure factors for in-plane third-order reflections (|`| <∼ 1). On the left
are shaded semicircles whose radii are proportional to the measured structure
factors, with the hollow, outer semicircles representing the error bars. On the
right are values calculated from the best fit. Asterisks represent points where
CTRs pass through the surface plane.
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Figure 3.9: Structure factors measured along third-order rods from
O/Cu(113)(3×1) facets. The circles are the measured data, and the lines
are the best fit from the disordered stripe model discussed in the text.
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observed by STM [69]. The significant disorder on this surface makes it unlikely that any

“superatoms” would be at well-defined crystallographic sites; attempts to refine positions of

additional atoms on top of the stripes were unsuccessful.

Like the O/Cu(104) facets, described in section 3.3.2, which were smooth as measured

by x rays, the O/Cu(113)(3×1) facets had β = 0 ± 0.01, using the geometrical model of

roughness described in Ref. [9] and section 1.1.4. One Debye-Waller factor of B = 0.5 Å2

sufficed for all atoms; this model is not detailed enough for the relatively fine effects of

additional Debye-Waller factors. Based on interatomic distances, three atoms per unit cell

were tentatively identified as O, with the appropriate form factor used in calculation of the

best fit. In the refinement of the atomic positions, 19 Cu atoms were allowed to relax from

their bulk-defined positions, besides the three O atoms and the three Cu atoms “disordered”

in y. Fig. 3.10 is a side view of the refined positions of the atoms in our disordered stripe

model. The structure factors calculated from this model are shown with the data in Figs.

3.8 and 3.9.

The goodness of fit parameter for the disordered stripe model is χ2 = 7.9; while certainly

leaving room for improvement, this was the best achievable given the disorder on the surface.

Most of the disagreement is associated with the third-order rod measurements rising and

falling more abruptly than the model predicts. This is a symptom of an over-simplified model:

deeper layer displacements are needed to increase the modulation, but would introduce many

additional fitting parameters. It is not clear that such a procedure would produce reliable

results. We expect our refined positions are the result of the ensemble average naturally

performed by diffraction across many unit cells. Since the structure of the stripes is expected

to vary in y (due to the blocks and possible “superatoms” observed with STM [69]), the

positions of the atoms beneath the stripes are also likely to vary with y. The results of the

simple disordered stripe model picks out the laterally averaged position of each atom.

Applying surface x-ray diffraction to O/Cu(113) facets has helped elucidate the struc-
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Figure 3.10: Side view of refined O/Cu(113)((3×1) surface structure. O atoms
have a smaller diameter than the Cu atoms. The thickness of the atoms shows
whether they are located in the y = 0 or 1

2
plane, or both (to model the

disorder on the surface).
The bottom two rows of atoms are unrelaxed from their bulk positions.

ture of these facets. Specifically, a noncentered (3×1) reconstruction was observed, and the

measured data were most consistent with a disordered stripe model. However, the disor-

dered nature of this surface precluded a full crystallographic analysis, therefore limiting the

conclusions which could be drawn. For a more complete understanding of O/Cu(113), other

surface science techniques, each with its own advantages and limitations, must be applied to

this system.

3.5 Conclusion

This chapter describes three surface structure determinations, of a clean vicinal surface

and of two oxygen-covered facets. While the determination of the O/Cu(104) facet struc-
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ture demonstrates the power of surface x-ray diffraction to detect subsurface atoms, the

determination of the Cu(115) surface structure and the O/Cu(113)(3×1) facet structure

demonstrate the more common situation, of the need for multiple, complimentary surface

science techniques (theoretical as well as experimental) to fully describe a surface. In the

case of O/Cu(113)(3×1), additional work remains on both preparation and analysis of this

disordered structure before a complete description can be reached.

We expect that our results for the O/Cu(104) facets should also describe the structure

of bulk O/Cu(104) single crystal surfaces. As discussed in Chapter 4, O/Cu(104) is one of

the most stable O-covered Cu surfaces, and the formation of O/Cu(104) facets appears to

drive the faceting of this system. It is conceivable that these facets may, in fact, be closer to

the lowest-energy structure of O on Cu(104) than even O/Cu(104) from bulk single crystals

(although surface x-ray diffraction experiments by Vleig et al. for such a sample resulted

in comparable data [91]). Bulk crystals may be hampered by misorientation, impurities, or

incomplete O adsorption, while the facets are less susceptible to such limitations. In our

preparation we are, in effect, growing the {104} substrate along with its surface. We note

that such a growth method is compatible with any surface science technique with sufficient

spatial or orientational resolution, in order to resolve the signal from the O/Cu(104) and

O/Cu(014) facets with that from the O/Cu(113) facets.

In contrast, the (113) facets are formed primarily because the surface must maintain its

macroscopic (115) orientation. These facets are significantly disordered and likely strained.

Indeed, the reconstruction formed by O on a Cu(113) single crystal is supposedly quite

different from the disordered stripes observed on the facets [69, 90]. Nevertheless, now that

several structures of O on Cu surfaces have been experimentally determined (and several

other surfaces have been found to be unstable against faceting), the time is ripe for theoretical

work to more completely describe the interactions of oxygen with both flat and stepped Cu

surfaces.
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Chapter 4

O-induced spinodal decomposition of

Cu(115)

4.1 Introduction

Atomic adsorption at surfaces is an important yet incompletely understood process, par-

ticularly in cases where adsorption induces a major rearrangement of the surface structure.

Changes in morphology can drastically affect many properties of a surface, especially in areas

such as catalysis [92, 93, 94, 95, 96] and corrosion [97]. One of the most dramatic changes a

surface can undergo is adsorbate-induced faceting, the breaking up of a surface into facets of

differing orientations under the influence of foreign adsorbates; this chapter investigates the

faceting of a high-Miller-index metal surface due to oxygen adsorption. Low symmetry, high

index surfaces provide a controlled starting surface (routinely characterized by traditional

surface science techniques) with many potential adsorption sites (steps and/or kinks) from

which the effects of adsorption can be generalized to more technologically relevant materials

(e. g., polycrystalline surfaces [98] or nanoparticles [99, 100]).

While thermal faceting is generally a complex, multistep process [101], adsorbate-induced
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faceting [102, 103, 104] is further complicated by adsorption kinetics [105, 93] and, if appli-

cable, molecular dissociation [106] or other chemical reactions [107]. Once facet nucleation

has begun, surface diffusion [108] can become the dominant process in facet growth and

coarsening; significant mass transfer may be involved in the growth of facets which can be

hundreds of Å across. While the surface is, ultimately, driven towards a new equilibrium

configuration, the kinetics of adsorption or diffusion can severely affect the surface’s final

morphology, as can variations in the stability of various orientations.

Chapter 3 described the crystallographic structure of facets formed by exposing Cu(115)

to O; we now turn to the formation of those facets, which we have observed in real time

with surface x-ray diffraction. Three stable facets are formed by O adsorption on Cu(115):

O/Cu(104), O/Cu(014), and O/Cu(113)(3×1), with the (104) and (014) facets being crystal-

lographically equivalent. We find that a sufficient O2 exposure induces spinodal decomposi-

tion of the surface, which proceeds with a strong temperature dependence. The temperature

dependence of the faceting process reflects changes in the relative stability of various facet

orientations, and allows us to propose a Wulff plot for O-covered Cu facets in the vicinity of

(115). The time evolution of the faceting process shows a consistent, slow growth mode.

Several metal surfaces have been observed, under the appropriate conditions, to facet

upon oxygen adsorption, including many copper surfaces [62, 63, 64, 65, 85, 66, 67, 71, 68,

69, 70]. The case of O/Cu(115) is relatively complex, since two well-defined but inequivalent

types of facets result. In contrast are the cases of O-induced faceting of W(100), W(112), and

W(111), since, for sufficiently high O coverage, only O/W{110} facets are formed [109]. As

another example, only one smooth surface is formed when O was observed to cause faceting

of miscut Ag(110): the surface transformed to regions of smooth O/Ag(110) and heavily

stepped regions without a well-defined orientation [110].

The structure of many faceting systems have been investigated with a variety of surface

probes, including LEED [109, 111, 93], scanning probe microscopies (STM [112, 113, 110]
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and AFM [114, 115, 116]), low energy electron microscopy (LEEM) [117, 118], helium-beam

scattering [119], transmission electron microscopy [112], and, in a few appropriate systems,

field ion microscopy [120, 121, 122]. Recently, x-ray scattering methods have been applied

to study the thermal faceting of various miscut surfaces, including Cu(110) [123], Ni(111)

[124], Pt(001) [125], Pt(111) [126], Au(111) [127], Au(001) [128], and Si(113) [129, 130,

131]. In heteroepitaxial systems, x rays have been used to study the formation of facets

on “hut clusters,” including the {105} facets of Ge/Si(001) [132] and the {103} facets of

In/Ge(001) [133]. In the metal-on-metal systems of Cu/Ni(001) [134] and Co/Pt(110) [135],

x-ray diffraction found that fcc crystallites grow with {111} facets.

4.2 Background: Wulff plot and equilibrium crystal

shape

Before moving to a description of the experiment, we very briefly discuss the theory of

equilibrium crystal shapes, or equivalently, the stability of various surface orientations. The

equilibrium shape of a crystal is given by the Wulff construction, i. e., the dependence

of surface free energy on orientation [136]. To construct a Wulff plot (also known as the

gamma plot), radii from the origin are drawn to every point on a polar plot of surface

free energy vs. orientation (actually, radii only need be drawn to all local minima). Planes

perpendicular to the radii are drawn at the intersection of the surface free energy plot, with

the minimum interior volume representing the equilibrium crystal shape. Mathematically,

this is equivalent to a two-dimensional Legendre transformation [101]. Fig. 4.1 provides a

two-dimensional example.

A cusp (i. e., a local minimum with a diverging derivative) in the Wulff plot denotes

a locally stable facet. By “locally stable,” we mean that this orientation has a lower free

energy than immediately adjacent orientations; this is the case for orientations A, B, C, and
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Figure 4.1: Sample Wulff construction, showing the surface free energy vs.
orientation (outer, thinner line) and the resulting equilibrium crystal shape
(inner, thicker line). Dashed lines are radii from the origin to local minima of
the surface free energy. The effects at orientations A through F are discussed
in the text.

F in Fig. 4.1. However, another nearby orientation may have such a deeper cusp that a facet

of the latter orientation is preferred to the former. In the example of Fig. 4.1, the cusps

at orientations A and C overwhelm the cusp at B, so orientation B is only a metastable

orientation which will not be found on the equilibrium crystal. Surface roughening may

occur for a range of orientations which have approximately equal (and locally minimal) free

energies [101]; this is the case for orientations D to E in Fig. 4.1. No orientations in this

range are energetically preferred, and the surface is, statistically, rough [101]. Adsorbates

and reconstructions may alter the anisotropy of the surface free energy enough to affect the

equilibrium crystal shape [137, 138], perhaps changing relative facet areas or driving some

orientations unstable. If adsorption leads to a deep cusp at a given orientation, then a

nearby, less stable surface may facet to the more stable orientation if the decrease in surface
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energy offsets the increase in surface area.

It has long been known [139] that the equilibrium shape of a crystal can be discussed

in the language of phase transitions of binary alloys. That is, orientations which appear

on the Wulff plot are stable phases; the edges which separate facets are phase boundaries,

which can be classified as first order transitions (in the case of sharp edges) or second order

transitions (for rounded edges) [101]. Orientations which do not appear on the Wulff plot

(e. g., orientation B in Fig. 4.1) are unstable phases; the faceting of such a surface into stable

orientations is thermodynamically favorable [140] and is a case of spinodal decomposition

[141, 139, 101, 142]. Several theoretical studies have focused on the stability of various

orientations at zero and finite temperatures [143, 104, 144, 84, 145]. Other theoretical work

has focused on the late-time evolution of the typical facet length scale L(t), often finding

power-law behavior

L(t) ∼ tφ (4.1)

or logarithmic behavior

L(t) ∼ ln(t). (4.2)

The choice between these forms (and also the value of the exponent φ) may depend sensitively

on the dimension of the system and the mode of mass transfer. Early on, Mullins [146, 147]

derived power-law behavior with φ = 1
2
, 1

3
, or 1

4
for mass transport in two dimensions by

evaporation/condensation, volume diffusion, and surface diffusion respectively. However,

these values are much higher than have typically been observed in experiments [129, 116] and

some simulations [148, 149, 150]. Attempting to explain the slower than expected coarsening

rates, Papoular [108] proposed φ = 1
6

when kink-antikink reorganization time is the limiting

factor in mass transport, while Song et al. [130] argued that φ = 1
6

when growth proceeds

by thermal collisions of step bunches. By working in the continuum limit, Stewart and

Goldenfeld [142] found that non-negligible surface stress could destroy any dynamic scaling,

while Liu and Metiu [149] derived logarithmic scaling in the case of quasi-one-dimensional
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surface diffusion. On the other hand, Shore and Buchman [151] argued that coarse-grained

models neglect dynamics on the scale of individual steps, which are too important to ignore

on vicinal surfaces. Barriers then depend on (grow with) the length scale, which again results

in logarithmic scaling [151]. Jeong and Weeks [152] also studied step-step interactions on

vicinal surfaces, finding that flat reconstructed terraces grow very fast, in fact linearly with

time, along the step direction, but with φ = 1
2

or 1
4

perpendicular to the steps (for global or

local mass transport, respectively). Furthermore, they found the kinetic effects of local mass

transport were sufficient for a growing facet to nucleate new facets nearby [152]. Vlachos

et al. [150] used Monte Carlo simulations to study faceting under equilibrium conditions,

finding that the exponent φ could vary with temperature, orientation, and material [150].

4.3 Experimental method

This series of experiments was performed in situ at beamline X16A of the National Syn-

chrotron Light Source, Brookhaven National Lab, on the five-circle UHV diffractometer [15].

The starting surface, clean Cu(115), was prepared fresh for each O-dosing experiment by

sputtering with 1 keV Ar+ ions followed by annealing to 550◦ C. The sample temperature

was then slowly lowered to a desired point (200◦ C to 400◦ C), and Cu(115) CTRs were

measured to verify that the surface was clean, ordered, and free of other facets. O2 was

then admitted into the chamber through a leak valve at a constant partial pressure (PO2=

2× 10−9 Torr to 1.5× 10−7 Torr).

To observe the faceting process with diffraction, we continuously performed scans while

dosing progressed. We scanned near the (603)115 bulk Bragg peak, but close to the surface

plane (` = 0.6) to enhance surface sensitivity. (The relation between standard fcc units and

115 surface units is given by Eq. 3.1.) As discussed in Section 3.1, any well-defined facet

on the surface will have a CTR associated with it. By locating the intersection of a CTR
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and the ` = 0.6 plane, its facet orientation could be precisely determined, since these CTRs

intersect the (603)115 Bragg point. The primary scans we performed were along [h, 0, 0.6],

to scan continuously from the (115) to (113) orientations. This scan effectively searches for

all (11n)-oriented facets from n ∼ 6 to n ∼ 2.5. In several experiments, we also scanned

radially and transversely through the (104) facet CTR. Our results, based on many various

dosing experiments at various temperatures and O2 partial pressures, are described in the

next section.

4.4 Faceting observed by x-ray diffraction

4.4.1 Early stages of facet formation

Evolution of the Cu(115) surface morphology during the early stage of O adsorption was

qualitatively similar for the entire range of temperatures and O2 partial pressures under

consideration, and is described first. (Later effects, which vary strongly with substrate

temperature, are described in subsections 4.4.2 through 4.4.4.) No immediate changes were

observed in the (115) CTR as O dosing began, but slowly, the intensity of the CTR decreased

without observable broadening or shifting of the peak; no facets other than (115) were

observed in this time. This behavior is consistent with a random disordering of the steps

on this vicinal surface [153, 150], similar to that observed for O on Cu(hk0) vicinal surfaces

[154]. Indeed, calculations by Jeong and Weeks [155] predicted that step fluctuations should

increase (and step stiffness decrease, relative to an isolated step) for such a vicinal surface

undergoing spinodal decomposition.

Quite suddenly, however, the O-decorated Cu(115) surface destabilized and nanoscopic

facets began to form. Two changes, occurring simultaneously, marked this transformation:

the abrupt appearance of the O/Cu(104) and O/Cu(014) CTRs, and the slow shift of the

(115) CTR towards the (113) orientation. We index the intermediate facet as (11n), with
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Figure 4.2: Selected scans through (11n) facet CTRs during faceting, for three
representative temperatures. These scans are performed below the (603)115

bulk peak, at k = 0, ` = 0.6 in units of the 115 surface unit cell (similar to
the dotted line in Fig. 3.2). The vertical dashed line indicates the (115) peak
position (h = 6.0), while the dot-dashed line marks the (113) peak position
(h = 6.28). Scanning proceeded from left to right, the same direction as peak
motion, resulting in a slight broadening of the peaks.
a) T = 389◦ C; faceting does not cease at the (113) orientation.
b) T = 340◦ C; faceting proceeds smoothly from (115) to (113).
c) T = 260◦ C; faceting occurs discontinuously from (115) to (113).
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n representing the continuum of well-defined but nonsingular orientations between (115)

and (113), since it has a well-defined orientation but no special direction. The tilting of

the (11n) CTR resulted from a shift in facet orientation away from (115) toward a more

densely-stepped surface. This gradual tilting is shown for three dosing experiments in Fig.

4.2. The [h, 0, 0.6] scans shown in Fig. 4.2 are a direct measure of facet orientation, since

all of the rods pass through the (603)115 bulk peak. The strong temperature dependence of

the facet evolution is discussed below.

By repeating the O dosing experiments at many temperatures and pressures, we found a

wide range in the time delay between initiation of O2 dosing and the commencing of faceting,

as shown in Fig. 4.3a. Instead, we found that the amount of exposed O2 (i. e., dose), rather

than exposure time, was the critical factor to initiate faceting. For the entire range of

pressures and temperatures studied in these experiments, faceting began after an exposure

of 9.6 ± 1.4 L of oxygen, as shown in Fig. 4.3b. For the purposes of Fig. 4.3, the “starting

dose” is defined as the dose at which the (115) CTR moved by its halfwidth from h = 6.0

towards higher h (medium and high temperatures), or else developed a clear shoulder on the

high-h side (lower temperatures). An alternate definition, namely the exact dose at which

the (104) facet CTR first appeared, is more difficult to employ; the change in position (or

lineshape) of an existing peak was easier to observe than the appearance of a new peak out

of the diffuse background. However, we find the two definitions to be equivalent to within

± 1 L when we project the early-time (104) CTR intensities, shown in Fig. 4.7, back to zero

elapsed dose (i. e., dose with the “starting dose” subtracted off).

In our measurements, the starting dose could be most accurately determined when

changes in surface morphology were the slowest, i. e., at lower O2 partial pressures. This

accounts for the larger error bars for the higher pressures in Fig. 4.3b; in fact, experiments

at even higher partial pressures are excluded from Fig. 4.3 because in these cases faceting

occurred too quickly to accurately determine the starting dose. Since the temporal evolution
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Figure 4.3: Plots of a) elapsed time and b) O2 dose at which faceting began,
which turns out to be a dose of 9.6 L. “Starting dose” is defined as the dose
of O2 at which the (115) facet peak began to move towards (113).

of the faceting surface depended on cumulative O2 exposure (rather than exposure time) in

the following sections we will plot any changes to the facets against O2 dose as a way to

normalize experiments performed at different O2 partial pressures. Faceting was typically

completed after a total dose of 30 to 40 L independent of temperature or pressure (except for

the highest temperatures, as described below), but the time scales could range from minutes

to hours depending on PO2 .

The observation that faceting begins after a 9.6-L dose is consistent with STM micro-

graphs taken by Taglauer et al. [156] at 210◦ C as a function of dose: After an O2 exposure

of 10 L, the Cu(115) surface was somewhat disordered and a moderate fraction of the surface

area was faceted. The surface was completely transformed to (104), (014), and (113) facets

after a 30-L exposure, although facet sizes continued evolving after higher doses [156].

The observed behavior of the (104) and (014) facets differed significantly from that of

the (11n) facets. The CTRs associated with the (104) facets were always found at the exact

(104) orientation, never shifting position. These (104) peaks did gain intensity, reflecting

the growth of these facets across the surface until the (11n) facet ceased evolving; this
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behavior of the (104) facets was found for all temperatures studied. The (113) facets, as

mentioned above, did not form abruptly; furthermore, their evolution is strongly temperature

dependent. Each temperature regime is discussed separately in the following sections.

4.4.2 Medium-temperature facet formation

We first discuss (113) facet growth in the medium temperature regime (310◦ C <∼ T <∼ 370◦

C), since the phenomenon was most straightforward here. Just as the {104} facet peak

appeared, the (115) peak shifted in the +h direction away from its original position of

h = 6, as seen in Fig. 4.2b. No shift was ever observed in k. This change in peak position

corresponded to a change in the orientation of the (11n) facet, with n changing smoothly

from 5 to 3 in this temperature regime. To better visualize the evolution of the (11n) facets,

the facet positions from Fig. 4.2 are plotted against O2 exposure in Fig. 4.4. Since peak

position in h for a given ` (the left axes of Fig. 4.4) is a direct measure of facet orientation,

angular deviation of the facet from (115) is shown on the right axes. The symbol size in this

figure is indicative of the height of the peak from Fig. 4.2.

In this middle temperature regime, the (11n) facet peak was moderately broader than

the initial (115) peak but remained sharp, reflecting a well-defined yet continuously changing

orientation as the (104) and (014) facets grew. The widths of the (11n) peaks are given by

a combination of the facet size, the small but nonzero distribution of facet orientations, and

instrumental resolution (including the effect of scans being performed along the direction

of peak motion, see Fig. 4.2). The shifting of the (11n) orientation was due to a gradual

bunching of steps on the (11n) facets, with the average step separation changing from 6.64

Å [for Cu(115)] to 4.24 Å [for Cu(113)]. This mode of step formation may help explain the

structural disorder found on the O/Cu(113)(3×1) facets (see Sec. 3.4 and Ref. [69]).

Once faceting concluded and the (113) peak had formed, we found that the size of the

facets (inversely proportional to the CTR widths) tended to be greater at higher tempera-
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Figure 4.4: Positions of (11n) facets shown in Fig. 4.2 during dosing. The
radius of the symbol is proportional to the height of the facet peak. The left
axis gives peak position in 115 reciprocal lattice units, and the right gives the
angle of the facet from (115) [which is 9.45◦ for (113)].
For a) and b) (T = 389◦ C and 340◦ C respectively), circles represent the
position of the one (11n) facet as it changes smoothly from (115) to (113)
(and beyond, for T = 389◦ C). For c) (T = 260◦ C), pentagons refer to the
(115) peak position, diamonds to the (11n) facet, and triangles to the (113)
peak.
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tures (as long as T < 370◦ C). This is seen in the significantly broader (113) peak at T = 260◦

C (Fig. 4.2c) compared to the (113) peak at T = 340◦ C (Fig. 4.2b), even though the initial

(115) peaks at the two temperatures were about equally wide.

4.4.3 High-temperature facet formation

As is the case for medium temperatures, the faceting process at high temperatures (T >∼ 370◦

C) began with the simultaneous appearance of (104) facet CTRs and movement of the (115)

CTR towards (113). The change in orientation through the (11n) facets was smooth, as

before (the scans in Fig. 4.2a are not equally spaced in time); the difference is that the facet

continued well past the (113) position! Even after a dose of 100 L, the orientation of the facet

continued to tilt away from (115), although the rate of peak motion had slowed considerably.

In terms of the Wulff plot, this behavior demonstrates the removal of the cusp at (113), as

discussed in detail below.

4.4.4 Low-temperature facet formation

The formation of (113) facets at low temperatures (T <∼ 310◦ C) differed significantly from

the previous cases. After a dose of 10 L, the {104} facets formed suddenly, as above, but the

(11n) facet did not slowly and smoothly shift in orientation, as seen in Fig. 4.2c. Instead, a

shoulder appeared on the high-h side of the (115) peak, which grew and shifted as the (115)

peak disappeared. The shoulder became the (11n) peak but did not proceed continuously to

n = 3. It moved less than halfway to the (113) position and then dropped in intensity while

the (113) peak abruptly appeared. In sharp contrast to the results at higher temperatures,

no well-defined peak was observed for the range of orientations around h = 6.2 (due to an

increase in the surface free energy of these orientations). Two peaks were present for part of

the dosing time; thus, the faceting surface at lower temperatures consisted of two coexisting

domains of (113) and (11n) orientation, with the (113) facets growing at the expense of the

76



(11n) facets.

The (113) CTR did not change orientation once the (11n) facet had disappeared, but a

moderate increase in intensity and narrowing of width was typically observed. This effect,

more pronounced in the low temperature regime, reflects the slow ordering which took place

on this moderately disordered (Sec. 3.4) surface. The ordering was slowest and least complete

at lowest temperatures, where surface diffusion was slowest. No corresponding effect was

observed for the (104) CTRs, which did not seem to change in intensity or width once the

(11n) facet peak disappeared.

4.4.5 Reversal of faceting

Once the (113) facets had formed and surface evolution had ceased, we observed that the

faceted surface was stable even when oxygen gas was removed from the chamber. Facets de-

composed only upon annealing at 500◦ C, at which point O desorption from the fully faceted

surface became significant. We also performed a few experiments wherein the O supply

was cut off after faceting had begun, but well before (113) facets had formed. Specifically,

during a dose at T = 263◦ C and PO2= 8× 10−9 Torr, the O2 supply was cut off when the

(11n) peak had reached h = 6.08 (as in Fig. 4.2); faceting did not continue or even cease,

but immediately reversed, reverting to the (115) orientation without the development of any

other facets. This (115) surface was moderately well-ordered, as judged by CTR intensi-

ties and widths, but was not as good as a freshly prepared (115) surface. In another case,

O-dosing in the high-temperature regime (T = 389◦ C, PO2= 1.5 × 10−8 Torr) was cut off

with the (11n) peak at h = 6.36 (just after the last scan in Fig. 4.2a); reversal of orientation

was again immediate, and we note that this surface showed no tendency to stabilize at the

(113) facet, but continued back towards (115). The immediate reversal of facet formation

is directly attributable to oxygen desorption. But as a surface with crystallographically in-

equivalent facets is not well-suited for a quantified study of desorption kinetics, this series
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of experiments was not pursued further.

4.5 Stability and evolution of facets

4.5.1 Equilibrium surface free energies of facets

The real-time experiments described in Sec. 4.4 dramatically demonstrate the sensitivity of

the O/Cu(115) faceting process to temperature, but its relative insensitivity to O2 partial

pressure. From these results we are able to qualitatively describe the relative stabilities of

a number of orientations near the O/Cu(115) pole, and quantitatively determine the long-

time evolution of the faceting surface. Such results are possible because the surface structure

remains, locally, in equilibrium as the surface undergoes spinodal decomposition from (115)

to (104), (014), and (11n) facets. While the oxygen in vapor form is not in equilibrium

with the oxygen adsorbed on the surface, we argue that the surface morphology is always in

equilibrium for a given oxygen coverage.

Several observations show that adsorbate-induced faceting in this system is not merely a

kinetic effect. First of all, Sec. 4.4.1 demonstrates that, for all temperatures and pressures

investigated, faceting begins after a nonzero O2 dose, i. e., after a certain amount of oxygen

had adsorbed onto Cu(115). A kinetically activated process would likely be observed to begin

immediately, or exhibit a temperature-dependent time (not dose) delay. Second, continued

oxygen adsorption was essential for faceting to continue. As described in Sec. 4.4.5, the

removal of O2 from the vacuum chamber immediately caused the facets to decompose; a

kinetic effect might cause facet evolution to stall without O2 but would not reverse the

process. We also note that the role of oxygen is not primarily that of a surfactant, i. e., to

increase the mobility of Cu adatoms; previous experiments [157, 158] have demonstrated the

high mobility of Cu on low-symmetry Cu surfaces without oxygen present, at substantially

lower temperatures. The oxygen, then, changes the surface free energies of various facet
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orientations, forcing the surface to undergo spinodal decomposition as O coverage increases.

The primary effect of O on the Cu(115) surface, then, is to lower the surface free energy of

the (104) facet, which results in an increase in the anisotropy of the Wulff plot. As discussed

in Sec. 4.2, faceting can become energetically favorable for a sufficiently anisotropic Wulff

plot, despite the accompanying increase in surface area. In the present series of experiments,

O/Cu(104) facets were observed for all faceting temperatures and O2 partial pressures; these

facets formed abruptly and were never misoriented. Therefore, we conclude that formation of

O/Cu(104) facets drives the faceting of the Cu(115) surface, consistent with previous studies

on Cu(115) and other Cu(001) vicinal surfaces. The stability of this facet has been attributed

to its structural similarity to a regularly stepped version of the O/Cu(001)(2
√

2×√2) surface

[89]; this concept may be tested rigorously now that the O/Cu(104) structure is known

(Section 3.3).

Once the O/Cu(104) facets begin to form and grow, the (11n) facets must evolve in order

to maintain a macroscopic (115) orientation. Therefore, O/Cu(115) facets cannot remain on

the surface, but it does not necessarily follow that these facets become unstable. Boulliard

et al. [67] observed a weak LEED pattern from (115) facets after O-induced faceting of

Cu(117) at high coverages and low temperatures (200◦ C). O/Cu(115) could thus be locally

stable but, like orientation B in Fig. 4.1, be overwhelmed by nearby orientations with much

lower surface free energies.

The evolution of the (11n) facet orientation is thus driven by the growth of the (104)

facets (essentially via step bunching). That is, as the (104) facets grow, the (11n) facets

must tilt farther and farther from (115) in order to maintain an overall (115) orientation for

the macroscopic surface. This tilting involves a significant amount of mass transport of the

Cu atoms at and near the surface, which in this UHV experiment occurs by surface diffusion

(rather than bulk diffusion or evaporation-condensation). The details of this evolution,

however, are sensitive to the surface free energies of the O-covered (11n) facets. Fig. 4.4
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displays the contrasting behaviors of (11n) facet evolution in the three temperature regimes;

the presence or absence of peaks at a given orientation is an indication of the relative surface

free energy of that orientation. For example, the orientation which corresponds to h = 6.15

is stable at 340◦ C (Fig. 4.4b) but not at 260◦ C (Fig. 4.4c), since essentially no peak is

present at that orientation for the lower temperatures. As another example, (113) has a

lower surface free energy than its neighboring orientations at 340◦ C (Fig. 4.4b), since the

(11n) facet becomes locked in to that orientation and does not evolve farther; this is caused

by the (3×1) reconstruction lowering the surface energy of that specific orientation. But at

389◦ C (Fig. 4.4a), evolution continues beyond (113), indicating that the free energy of this

surface orientation is not substantially different from its neighbors at this high temperature

[presumably due to the removal of the (3×1) reconstruction].

To concisely present the variations in surface free energy with orientation and tempera-

ture, we propose three Wulff plots around the (115) pole for the O on Cu system, one for

each observed temperature regime. The proposed plots are shown in Fig. 4.5a-c; these are

actually “beta plots” instead of “gamma plots,” i. e., a rectilinear instead of polar plot of

surface free energy vs. orientation. The orientational map is shown in Fig. 4.5d: ζ is the

angle between (115) and (113) (the right half of Fig. 4.5a-c), and ξ is the angle between (115)

and (104) (the left half). Orientations which do not fall along ζ or ξ were never observed,

and presumably have much higher surface free energies.

The deep cusps in the Wulff plots on the left side of Fig. 4.5 indicate, for all temperatures,

the significantly lower surface free energy of O/Cu(104) relative to any other orientation along

ξ. The depths of these cusps decrease with increasing temperature, matching the trend of

increased anisotropy in the Wulff plot at lower temperatures [138]. Cusps, not merely local

minima, are plotted because the O/Cu(104) facet derives its stability from its regular step

spacing; nearby orientations lack this stability, and were never observed here with x-ray

diffraction or elsewhere by STM [69]. Other orientations along ζ are assigned to much higher
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Figure 4.5: Proposed Wulff plots for the O on Cu system around the (115)
orientation. a) T >∼ 370◦ C; b) 310◦ C <∼ T <∼ 370◦ C; c) T <∼ 310◦ C. Details

are discussed in the text. d) Orientational map around the (115) pole.

surface free energies, since the irregularly spaced, <010>-type steps of these facets are not

expected to lead to stable orientations. The small minima at (115) indicate the slightly

lower surface free energy of this orientation relative to its neighbors, as inferred from its

appearance in the LEED patterns of Boulliard et al. [67] The more interesting temperature

dependence is along ζ, on the right side of Fig. 4.5. In the high temperature regime (Fig.

4.5a), the surface free energy varies little with orientation. The same is true of the medium

temperature regime (Fig. 4.5b), except for the cusp at (113); for these temperatures, the

(3×1) reconstruction lowers the surface free energy at this particular orientation. The bump

at lower temperatures (Fig. 4.5c) represents the higher surface free energies of the orientations

close to (113) but not observed. The near or total disappearance of the (113) cusp at high
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temperature and the bump along ξ at lower temperatures are again consistent with the trend

of increased anisotropy in the Wulff plot as temperatures are decreased. We do, however,

emphasize the information presented in Fig. 4.5 is necessarily qualitative. The presence or

absence of cusps (or other general features) can be linked to the presence or absence of

orientations as observed by this and other experiments. However, the relative values of the

surface free energies in Fig. 4.5, while consistent with experimental results, are estimations;

surface x-ray diffraction is not a direct measure of the Wulff plot. Furthermore, the surface

free energies of some orientations may vary with O coverage, which is beyond the scope of

Fig. 4.5. Diffraction can be used, however, to measure the state of the faceting surface, which

we present in the following section.

4.5.2 Dynamic scaling of facet growth

Beyond the schematic description of the orientational dependence of surface free energies,

the measurement of facet orientation vs. O2 exposure can explore the dynamic scaling of

the facets as they undergo spinodal decomposition. Two order parameters can be used

to describe the state of the faceting surface and present complementary information on the

complex process of facet growth: I104, the intensity of the (104) CTR at a given point, can be

related to the surface area covered by (104) facets, and ζ, the (11n) facet orientation relative

to (115), can be related to the relative sizes of the (104) and (11n) facets, as described below.

We begin our analysis of dynamic scaling with the evolution of the (11n) facets in the

middle- and high-temperature regimes. Indeed, it is not a priori clear whether this system

should exhibit any form of scaling at all, since the evolution of the (11n) peak will be sensitive

to the energy landscape along ζ (see Fig. 4.5). Specifically, the anisotropy of the Wulff plot

at low temperatures (T <∼ 310◦ C) will destroy any scaling of the (11n) facet evolution.

Experiments in the middle temperature range may exhibit scaling over a limited period of

time, but such behavior will be abruptly truncated when the facet orientation reaches (11n).
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Nevertheless, we can evaluate the relative area of the (104) facets based on the (11n) facet

orientation simply by employing two conservation laws [159]. The first is conservation of

projected surface area. If Si is the surface area of facet i projected onto the (115) plane

(i. e., the plane of the unfaceted surface), then

S115 = S104 + S014 + S11n. (4.3)

The second law is conservation of macroscopic orientation. If êi is the unit vector normal to

facet i, then the average orientation during and after faceting must remain the same as that

before faceting began:

S115ê115 = S104ê104 + S014ê014 + S11nê11n. (4.4)

Comparing the (104) and (014) facets, we can take

S104 = S014 (4.5)

since these facets are symmetry equivalents and uniformly tilted with respect to (115); small

deviations from eq. 4.5 could occur for a surface significantly miscut from (115) but are

negligible here.

Equations 4.3 through 4.5 can be used to solve for S104/S115, i. e., the surface area of the

(104) facets (projected onto the initial surface) relative to the starting (115) area, in terms

of the (11n) facet orientation:

S104

S115

=

√√
27
√

2 + n2 − 2− 5n√
67
√

2 + n2/
√

17− 4(1 + 4n)
. (4.6)

n can be written as a function of ζ, the angle of (11n) from (115):

n =
10− 27

√
2 sin(ζ) cos(ζ)

27 cos2(ζ)− 25
. (4.7)

And finally, ζ can be expressed in terms of h, the position (in reciprocal lattice units) of the

(11n) peak at a given ` (= 0.6) in Fig. 4.2:

tan ζ =
a∗(∆h)

c∗∆`
=

√
2 (h− 6)

2.4
, (4.8)
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where ∆h and ∆` are the displacements from the bulk Bragg point, which in this case is

(603) [in the (115) reference system]. Reciprocal lattice parameters a∗ and c∗ are also in

(115) units.

While eq. 4.6 gives the projected area of the (104) facets in terms of (11n) orientation,

two conditions must be met in order to turn S104/S115 into a useful scaling parameter: first,

the entire surface must be faceting at about the same rate; second, the area covered by the

faceting pyramids must remain constant during a dosing experiment. The first condition

requires that only well-defined (104), (014), and (11n) facets be found on the surface while

faceting occurs, with no (115) remaining. This has been experimentally verified for the

middle- and high-temperature faceting regimes, as described in Sections 4.4.2 and 4.4.3; it is

not met in the low-temperature regime (Sec. 4.4.4) since the distribution of (11n) orientations

becomes bimodal about halfway through the faceting process. The second condition is needed

to ensure that S104/S115 is a measure of the growing size of the (104) facets, instead of the

growth in number of (104) facets. Although some small amount of ripening probably occurs,

we observed the (104) facet peak to always cease evolving when the (11n) facet reached

(113). This proves that the (104) facets grow in size mainly at the expense of the (11n)

orientation, not at the expense of other (104) or (014) facets.

The results of scaling based on (11n) orientation are shown in Fig. 4.6. The normalized

area S104/S115 is plotted against elapsed dose (i. e., O2 exposure beyond the “starting dose”

as defined in Sec. 4.4.1) for four dosing experiments at medium and high temperatures. These

experiments were performed at different but relatively low oxygen partial pressures, since

slower changes in morphology could be traced with higher resolution. In addition, we have

plotted the best fits of logarithmic and power-law scaling over the later stages of faceting.

Dose = 0 was included as a fitting parameter, since it could not be precisely measured. We

find that both scaling forms produce very good fits to the available data, with very nearly

equal R factors such that we cannot prefer one form to the other. Furthermore, for the power-
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law fits, there is a rather large range in the fit to the exponent φ, from 0.11 to 0.25. The

limited information that can be derived from these fits is directly due to the relatively short

time spans over which faceting occurs: except for the high temperature experiment (Fig.

4.6d), faceting is abruptly truncated when the (113) facet is reached, necessarily limiting the

fittable range. Interestingly, the fitted exponent φ is lowest for the one high-temperature

experiment where dosing continues for the longest time, but logarithmic scaling still provides

an acceptable fit too.

Although the scaling in Fig. 4.6 was performed with respect to calculated area of the

(104) facets, these results essentially represent the growth of the facets in linear size. That

is, S104 ∝ LxLy where Lx and Ly are the length and width of the (104) facets (with the

directions x and y as defined in Sec. 3.3), but Fig. 4.6 mainly reflects evolution of Lx. This

is because the (104) facet growth is extremely anisotropic: a given facet grows very quickly

along its <010>-type rows (parallel to the O–Cu–O rows), but much slower across the rows.

While the widths of the (104) CTRs were quite broad in x (the direction perpendicular to

the <010> steps), the widths in y were much narrower (indicative of longer-ranged order)

and were not observed to change while faceting occurred. Therefore, the evolution of Ly

finished rapidly, and the facets grew in area mainly by the increase in Lx. Such growth rate

anisotropies have been previously observed experimentally [131] and theoretically [152].

As a separate measure of the size of the (104) facets, we have investigated the evolution

of I104, the scattered intensity at a point on the (104) CTR. Specifically, in Fig. 4.7 we plot

the peak intensity (above background) at the point (5.8285,−0.0572, 0.6)115 = (5, 1, 1.06)104

against elapsed dose. (See Fig. 3.6d to locate this point on the CTR.) For the four exper-

iments in the low- and middle-temperature regimes, the intensity is fit about equally well

by either logarithmic or power-law scaling. Again, this scaling only holds up to the point

at which the (113) orientation is reached and faceting ceases, whereupon I104 saturates. We

note that the evolution of I104 with dose is smooth (if relatively noisy) and gives no sign of
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Figure 4.6: Projected area of (104) facets vs. O2 exposure, for several dosing
experiments in the middle- and high-temperature regimes. Circles are mea-
sured areas, derived from eqs. 4.3 to 4.8; solid and dashed lines are best fits
to logarithmic and power-law scaling, respectively, both of which fit about
equally well.
a) Dosing with experimental conditions of T = 336◦ C and PO2= 2 × 10−8

Torr. The resulting power-law fit yields φ = 0.17± 0.04.
b) T = 340◦ C, PO2= 3× 10−9 Torr; φ = 0.26± 0.02.
c) T = 355◦ C, PO2= 1.5× 10−8 Torr; φ = 0.21± 0.02.
d) T = 389◦ C, PO2= 1.5× 10−8 Torr; φ = 0.11± 0.01.
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the discontinuous evolution of the (11n) orientation at low temperatures (in, e. g., Fig. 4.4c).

Although the mix of (11n) and (113) orientations prohibits reliable calculation of S104/S115

in the low-temperature regime, we can use I104 to study dynamical scaling in this regime.

I104 can be related to the number of (104) facets on the surface, Nf , and to the average

length and width of the facets (Lx and Ly respectively) by

I104 ∝ |F104|2Nf (LxLy)
2 (4.9)

and will be a useful scaling parameter if certain conditions are met. First, eq. 4.9 assumes

coherent scattering across a facet (i. e., the amplitude is proportional to the size of the

facet), but incoherent faceting between facets (i. e., the intensity is proportional to the

number of facets). This assumption is verified from our investigation of the O/Cu(104)

surface structure (Sec. 3.3), where we found the roughness parameter β = 0. β is essentially

a measure of the height variation of a rough surface, since atoms at different heights will

scatter with destructive interference (albeit coherently) [9]. Because a given (104) facet can

be atomically smooth (see the micrographs of Reiter and Taglauer [69]), but the faceted

surface is certainly not smooth on a length scale greater than the facet size, then β can

only be zero if the scattering between the (104) facets is completely incoherent. Next, the

condition that I104 reflect the evolution of facet size and not facet structure requires F104, the

structure factor of the (104) CTR at one given point, to be unchanging. That is, the surface

structure of the (104) facets must be constant. This condition is certainly met, since it is the

growth of the extremely stable O/Cu(104) facets which drives the spinodal decomposition of

the surface in the first place; the formation of intermediate structures on (104) facets would

be difficult to reconcile with the present description of the faceting process.

As we argued above for the case of scaling of S104/S115, Nf and Ly change little in the

later stages of faceting (due to the uniform faceting across the surface and to the anisotropic

growth of the (104) facets, respectively). Therefore, it is reasonable that the growth of I104

scales as L2
x, and the power-law exponents measured in Fig. 4.7 are thus equal to 2φ. The
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Figure 4.7: Variation of intensity from a point on a O/Cu(104) CTR during O2

dosing, during experiments in the low- and middle-temperature regimes. Cir-
cles are measured intensities; solid and dashed lines are best fits to logarithmic
and power-law scaling, respectively.
a) Dosing with T = 222◦ C and PO2= 7× 10−9 Torr. The resulting power-law
fit (see text for interpretation) yields 2φ = 0.25± 0.03.
b) T = 252◦ C, PO2= 6× 10−9 Torr; 2φ = 0.32± 0.06.
c) T = 260◦ C, PO2= 8× 10−9 Torr; 2φ = 0.33± 0.03.
d) T = 340◦ C, PO2= 3× 10−9 Torr; 2φ = 0.38± 0.03.
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average value of φ is, by this scaling method, 0.16, and the data may show a trend of φ

increasing with temperature (but we note that the statistics are too limited to draw a strong

conclusion there). The one experiment in which both S104/S115 and I104 were measured gave

a power-law fit with moderately comparable values of φ: 0.26 (Fig. 4.6b) vs. 0.19 (Fig. 4.7d)

respectively. If we combine the results of the power-law scaling of S104/S115 and I104, then the

best estimate of the exponent (given the limited range of dynamic scaling for each dosing

experiment) is 0.17 ± 0.03. This low value is consistent with other faceting experiments

[129, 116] performed on other, very different low-symmetry surfaces. We note, however, the

difficulty in differentiating power-law scaling with small exponents from logarithmic scaling.

While S104/S115 scales very well as a logarithm, implying that Lx could as well, I104 vs. dose

can not be fit as a logarithm squared, implying that either Lx does not exhibit logarithmic

dynamic scaling, or that some of the assumptions in eq. 4.9 and its accompanying discussion

are not justified. Logarithmic scaling would be consistent with one-dimensional diffusion

[149] and with diffusion lengths which grow with the facet size [151], either of which could

be expected for faceting on this vicinal surface.

To conclude, we have used surface x-ray diffraction to observe the process of oxygen-

induced faceting of Cu(115) in real time, finding a dose of about 10 L initiates the spinodal

decomposition of this surface into (104), (014), and (11n) facets. We interpret the complex

temperature dependence of the (11n) facet evolution as due to changes in the relative surface

free energies as a function of orientation, and thus present a temperature-dependent Wulff

plot. The dynamic scaling of the facet lengths illustrates the similar manner in which the

(104) facets grow, independent of the complexities of the Wulff plot along (11n). The low

symmetry of this faceted surface (i. e., three-sided facet pyramids with two crystallograph-

ically inequivalent sides) may not permit a direct comparison of these results to existing

models and theories, but does present a case of adsorbate-induced faceting whose dynamics

are consistent with theories which predict slow facet evolution.
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